The Right Ventricle in Left Heart Failure

  • Louis J. Dell’Italia
Part of the Respiratory Medicine book series (RM)


The right ventricle (RV) because of its low pressure working conditions and its complex geometry stands in stark contrast to the left ventricle (LV). Thus, under normal baseline conditions the RV’s unique anatomy, myocardial ultrastructure, and coronary physiology reflect a high volume low pressure pump. Early work by Starr et al. (Am Heart J 26:291–301, 1943), Bakos (Circulation 1:724–731, 1950), Kagan (Circulation 5:816–823, 1952), Donald and Essex (Am J Physiol 176:155–161, 1954) described the RV as a passive conduit with minimal pumping capability. Despite the marked differences in loading conditions and geometry in the normal state, RV myocardial and chamber dynamics respond in a manner similar to the LV pump mechanics. Over the years with improved functional imaging capabilities, it is now well appreciated that through its own unique properties and a mechanism of ventricular interdependence, RV systolic function and diastolic load are extremely important in the prognosis and treatment of congestive heart failure.


Right Ventricular Tricuspid Annular Plane Systolic Excursion Left Ventricle Ejection Fraction Pulmonary Artery Banding Right Ventricular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Starr I, Jeffers WA, Meade RH. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J. 1943;26:291–301.Google Scholar
  2. 2.
    Bakos AC. The question of the function of the right ventricular myocardium: an experimental study. Circulation. 1950;1:724–31.Google Scholar
  3. 3.
    Kagan A. Dynamic responses of the right ventricle following extensive damage by cauterization. Circulation. 1952;5:816–23.PubMedGoogle Scholar
  4. 4.
    Donald DE, Essex HE. Pressure studies after inactivation of the major portion of the canine right ventricle. Am J Physiol. 1954;176:155–61.PubMedGoogle Scholar
  5. 5.
    Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25:1143–53.PubMedGoogle Scholar
  6. 6.
    Polak JF, Holman BL, Wynne J, Colucci WS. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol. 1983;2:217–24.PubMedGoogle Scholar
  7. 7.
    Juilliere Y, Barbier G, Feldmann L, et al. Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J. 1997;18:276–80.PubMedGoogle Scholar
  8. 8.
    de Groote P, Millaire A, Foucher-Hossein C, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32:948–54.PubMedGoogle Scholar
  9. 9.
    Ghio S, Gavazzi A, Campana C, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–8.PubMedGoogle Scholar
  10. 10.
    Gavazzi A, Berzuini C, Campana C, et al. Value of right ventricular ejection fraction in predicting short term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant. 1997;16:774–85.PubMedGoogle Scholar
  11. 11.
    Meyer P, Filippatos GS, Ahmed MI, et al. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation. 2010;121:252–8.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bursi F, McNallan SM, Redfield MM, et al. Pulmonary pressures and death in heart failure. J Am Coll Cardiol. 2012;59:222–31.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Desai RV, Meyer P, Ahmed MI, et al. Relationship between left and right ventricular ejection fractions in chronic advanced systolic heart failure: insights from the BEST trial. Eur J Heart Fail. 2011;13:392–7.PubMedPubMedCentralGoogle Scholar
  14. 14.
    La Vecchia L, Paccanaro M, Bonanno C, Varotto L, Ometto R, Vincenzi M. Left ventricular versus biventricular dysfunction in idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83:120–2.PubMedGoogle Scholar
  15. 15.
    Gulati A, Ismail TF, Jabbour A, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in non-ischemic dilated cardiomyopathy. Circulation. 2013;128:1623–33.PubMedGoogle Scholar
  16. 16.
    Damy T, Ghio S, Rigby AS, Hittinger L, Jacobs S, Leyva F, Delgado JF, Daubert JC, Gras D, Tavazzi L, Cleland JG. Interplay between right ventricular function and cardiac resynchronization therapy: an analysis of the CARE-HF trial (Cardiac Resynchronization-Heart Failure). J Am Coll Cardiol. 2013;61(21):2153–6.PubMedGoogle Scholar
  17. 17.
    Kjaergaard J, Ghio S, St. John Sutton M, Hassager C. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy: results from the REVERSE trial. J Card Fail. 2011;17:100–7.PubMedGoogle Scholar
  18. 18.
    Lumens J, Ploux S, Strik M, Gorcsan 3rd J, Cochet H, Derval N, Strom M, Ramanathan C, Ritter P, Haïssaguerre M, Jaïs P, Arts T, Delhaas T, Prinzen FW, Bordachar P. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction. J Am Coll Cardiol. 2013;62:2395–403.PubMedGoogle Scholar
  19. 19.
    Campbell P, Takeuchi M, Bourgoun M, Shah A, Foster E, Brown MW, Goldenberg I, Huang DT, McNitt S, Hall WJ, Moss A, Pfeffer MA, Solomon SD. Multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy (MADIT-CRT) investigators. Right ventricular function, pulmonary pressure estimation, and clinical outcomes in cardiac resynchronization therapy. Circ Heart Fail. 2013;6(3):435–42.PubMedGoogle Scholar
  20. 20.
    Dell’Italia LJ, Santamore WP. Can indices of left ventricular function be applied to the right ventricle? Prog Cardiovasc Dis. 1998;40:309–24.PubMedGoogle Scholar
  21. 21.
    Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40:289–308.PubMedGoogle Scholar
  22. 22.
    Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30: 167–87.PubMedGoogle Scholar
  23. 23.
    Hochreiter C, Niles N, Devereux RB, et al. Mitral regurgitation: relationship of noninvasive descriptors of right and left ventricular performance to clinical and hemodynamic findings and to prognosis in medically and surgically treated patients. Circulation. 1986;73(5): 900–12.PubMedGoogle Scholar
  24. 24.
    Borer JS, Hochreiter CA, Supino PG, Herrold EM, Krieger KH, Isom OW. Importance of right ventricular performance measurement in selecting asymptomatic patients with mitral regurgitation for valve surgery. Adv Cardiol. 2002;39:144–552.PubMedGoogle Scholar
  25. 25.
    Rosen SE, Borer JS, Hochreiter C, Supino P, Roman MJ, Devereux RB, Kligfield P, Bucek J. Natural history of the asymptomatic/minimally symptomatic patient with severe mitral regurgitation secondary to mitral valve prolapse and normal right and left ventricular performance. Am J Cardiol. 1994;74(4):374–80.PubMedGoogle Scholar
  26. 26.
    Wencker D, Borer JS, Hochreiter C, et al. Preoperative predictors of late postoperative outcome among patients with nonischemic mitral regurgitation with ‘high risk’ descriptors and comparison with unoperated patients. Cardiology. 2000;93:37–42.PubMedGoogle Scholar
  27. 27.
    Barbieri A, Bursi F, Grigioni F, Tribouilloy C, Avierinos JF, Michelena HI, Rusinaru D, Szymansky C, Russo A, Suri R, Bacchi Reggiani ML, Branzi A, Modena MG, Enriquez-Sarano M. Mitral Regurgitation International DAtabase (MIDA) Investigators. Prognostic and therapeutic implications of pulmonary hypertension complicating degenerative mitral regurgitation due to flail leaflet: a multicenter long-term international study. Eur Heart J. 2011;32(6):751–9.PubMedGoogle Scholar
  28. 28.
    Le Tourneau T, Richardson M, Juthier F, Modine T, Fayad G, Polge AS, Ennezat PV, Bauters C, Vincentelli A, Deklunder G. Echocardiography predictors and prognostic value of pulmonary artery systolic pressure in chronic organic mitral regurgitation. Heart. 2010;96(16): 1311–7.PubMedGoogle Scholar
  29. 29.
    Le Tourneau T, Deswarte G, Lamblin N, Foucher-Hossein C, Fayad G, Richardson M, Polge AS, Vannesson C, Topilsky Y, Juthier F, Trochu JN, Enriquez-Sarano M, Bauters C. Right ventricular systolic function in organic mitral regurgitation: impact of biventricular impairment. Circulation. 2013;127(15):1597–608.PubMedGoogle Scholar
  30. 30.
    Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon Jr DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anaesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e1–142.PubMedGoogle Scholar
  31. 31.
    Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC), European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Iung B, Lancellotti P, Pierard L, Price S, Schäfers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.PubMedGoogle Scholar
  32. 32.
    Baker BJ, Wilen MM, Boyd CM, et al. Relation of right ventricular ejection fraction to exercise capacity in chronic left ventricular failure. Am J Cardiol. 1984;54:596–9.PubMedGoogle Scholar
  33. 33.
    Leier CV, Huss P, Magorien RD, Unverferth DV. Improved exercise capacity and differing arterial and venous tolerance during chronic isosorbide dinitrate therapy for congestive heart failure. Circulation. 1983;67:817–22.PubMedGoogle Scholar
  34. 34.
    Franciosa JA, Baker BJ, Seth L. Pulmonary versus systemic hemodynamics in determining exercise capacity of patients with chronic left ventricular failure. Am Heart J. 1985;110: 807–13.PubMedGoogle Scholar
  35. 35.
    Cohn JN, Archibald DG, Phil M, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. N Engl J Med. 1986;314:1547–52.PubMedGoogle Scholar
  36. 36.
    Yin FCP, Guzman PA, Brin KP, et al. Effect of nitroprusside on hydraulic vascular loads on the right and left ventricle of patients with heart failure. Circulation. 1983;67:1330–9.PubMedGoogle Scholar
  37. 37.
    Packer M, Medina N, Yushak M, Lee WH. Comparative effects of captopril and isosorbide dinitrate on pulmonary arteriolar resistance and right ventricular function in patients with severe left ventricular failure: results of a randomized crossover study. Am Heart J. 1985;109: 1293–9.PubMedGoogle Scholar
  38. 38.
    Packer M, Lee WH, Medina N, Yushak M. Hemodynamic and clinical significance of the pulmonary vascular response to long-term captopril therapy in patients with severe chronic heart failure. J Am Coll Cardiol. 1985;6(3):635–45.PubMedGoogle Scholar
  39. 39.
    Colucci WS, Holman BL, Wynne J, et al. Improved right ventricular function and reduced pulmonary vascular resistance during prazosin therapy of congestive heart failure. Am J Med. 1981;71:75–80.PubMedGoogle Scholar
  40. 40.
    Massie B, Kramer BL, Topic N, Henderson SG. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise. Circulation. 1982;65(7):1374–81.PubMedGoogle Scholar
  41. 41.
    Konstam MA, Salem DN, Isner JM, et al. Vasodilator effect on right ventricular function in congestive heart failure and pulmonary hypertension: end-systolic pressure-volume relation. Am J Cardiol. 1984;54:132.PubMedGoogle Scholar
  42. 42.
    Konstam MA, Cohen SR, Salem DN, et al. Comparison of left and right ventricular end-systolic pressure-volume relations in congestive heart failure. J Am Coll Cardiol. 1985;5:1326.PubMedGoogle Scholar
  43. 43.
    David Verhaert D, Mullens W, Borowski A, et al. Right ventricular response to intensive medical therapy in advanced decompensated heart failure. Circ Heart Fail. 2012;3:340–6.Google Scholar
  44. 44.
    Armour JA, Randall WC. Structural basis for cardiac function. Am J Physiol. 1970; 218(6):1517–23.PubMedGoogle Scholar
  45. 45.
    Santamore WP, Meier GD, Bove AA. Effects of hemodynamic alterations on wall motion in the canine right ventricle. Am J Physiol. 1979;236(2):H254–62.PubMedGoogle Scholar
  46. 46.
    Meier GD, Bove AA, Santamore WP, Lynch PR. Contractile function in canine right ventricle. Am J Physiol. 1980;239:H794–804.PubMedGoogle Scholar
  47. 47.
    Raines RA, LeWinter MM, Covell JW. Regional shortening patterns in canine right ventricle. Am J Physiol. 1976;231(5):1395–400.PubMedGoogle Scholar
  48. 48.
    Armour JA, Pace JB, Randall WC. Interrelationship of architecture and function of the right ventricle. Am J Physiol. 1970;218(1):174–9.PubMedGoogle Scholar
  49. 49.
    Pace JB, Keefe WF, Armour JA, Randall WC. Influence of sympathetic nerve stimulation on right ventricular outflow-tract pressures in anesthetized dogs. Circ Res. 1969;24:397–407.PubMedGoogle Scholar
  50. 50.
    Pouleur H, Lefèvre J, Mechelen HV, Charlier AA. Free-wall shortening and relaxation during ejection in the canine right ventricle. Am J Physiol. 1980;239:H601–13.PubMedGoogle Scholar
  51. 51.
    Raizada V, Sahn DJ, Covell JW. Factors influencing late right ventricular ejection. Cardiovasc Res. 1988;22:244–8.PubMedGoogle Scholar
  52. 52.
    Marving J, Hoilund-Carlsen PF, Chræmmer-jorgensen B, Gadsboll N. Are right and left ventricular ejection fractions equal? Ejection fractions in normal subjects and in patients with first acute myocardial infarction. Circulation. 1985;72(3):502–14.PubMedGoogle Scholar
  53. 53.
    Johnson LL, Lawson MA, Blackwell GG, Tauxe EL, Russell K, Dell’Italia LJ. Optimizing the method to calculate RV ejection fraction from first pass data acquired using a multicrystal camera. J Nucl Cardiol. 1995;2:372–9.PubMedGoogle Scholar
  54. 54.
    Keith A. Fate of the bulbus cordis in the human heart. Lancet. 1924;2:1267–73.Google Scholar
  55. 55.
    Schlesinger MJ, Zoll PN, Wessler S. The conus artery: a third coronary artery. Am Heart J. 1949;38:823–36.PubMedGoogle Scholar
  56. 56.
    Levin DC, Beckmann CF, Garnic JD, et al. Frequency and clinical significance of failure to visualize the conus artery during coronary arteriography. Circulation. 1981;63(4):833–7.PubMedGoogle Scholar
  57. 57.
    Adams J, Treasure T. Variable anatomy of the right coronary artery supply to the left ventricle. Thorax. 1985;40:618–20.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Asmer I, Adawi S, Ganaeem M, Shehadeh J, Shiran A. Right ventricular outflow tract systolic excursion: a novel echocardiographic parameter of right ventricular function. Eur Heart J Cardiovasc Imaging. 2012;13:871–7.PubMedGoogle Scholar
  59. 59.
    Dell’Italia LJ, Lembo NJ, Starling MR, et al. Hemodynamically important right ventricular infarction: follow-up evaluation of right ventricular systolic function at rest and during exercise with radionuclide ventriculography and respiratory gas exchange. Circulation. 1987;75:996.PubMedGoogle Scholar
  60. 60.
    Dell’Italia LJ, Starling MR, Crawford MH, et al. Right ventricular infarction: identification by hemodynamic measurements before and after volume loading and correlation with noninvasive techniques. J Am Coll Cardiol. 1984;4:931.PubMedGoogle Scholar
  61. 61.
    Steele P, Kirch D, Ellis J, et al. Prompt return to normal of depressed right ventricular ejection fraction in acute inferior infarction. Br Heart J. 1977;39:1319.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Singh SF, White FC, Bloor CM. Myocardial morphometric characteristics in swine. Circ Res. 1981;49:434–41.PubMedGoogle Scholar
  63. 63.
    Marchetti G, Merlo L, Noseda V. Coronary sinus outflow and O2 content in anterior cardiac vein blood at different levels of right ventricle performance. Pflugers Arch. 1969;310:116–27.PubMedGoogle Scholar
  64. 64.
    Kusachi S, Nishiyama O, Yasuhara K, et al. Right and left ventricular oxygen metabolism in open-chest dogs. Am J Physiol. 1982;243:H761–6.PubMedGoogle Scholar
  65. 65.
    Takeda K, Haraoka S, Nagashima H. Myocardial oxygen metabolism of the right ventricle with volume loading and hypoperfusion. Jpn Circ J. 1987;51:563–72.PubMedGoogle Scholar
  66. 66.
    Saito D, Yamada N, Kusachi S, et al. Coronary flow reserve and oxygen metabolism of the right ventricle. Jpn Circ J. 1989;53:1310–6.PubMedGoogle Scholar
  67. 67.
    Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood). 2005;230(8):507–19.Google Scholar
  68. 68.
    Saito D, Tani H, Kusachi S, et al. Oxygen metabolism of the hypertrophic right ventricle in open chest dogs. Cardiovasc Res. 1991;25(9):731–9.PubMedGoogle Scholar
  69. 69.
    Kolin A, Ross G, Gaal P, et al. Simultaneous electromagnetic measurement of blood flow in the major coronary arteries. Nature. 1964;203(4941):148–50.PubMedGoogle Scholar
  70. 70.
    Ross G. Blood flow in the right coronary artery of the dog. Cardiovasc Res. 1967;1:138–44.PubMedGoogle Scholar
  71. 71.
    Aukland K, Kiil F, Kjekshus J. Relationship between ventricular pressures and right and left myocardial blood flow. Acta Physiol Scand. 1967;70:116–26.PubMedGoogle Scholar
  72. 72.
    Bellamy RF, Lowensohn HS. Effect of systole on coronary pressure-flow relations in the right ventricle of the dog. Am J Physiol. 1980;238:H481–6.PubMedGoogle Scholar
  73. 73.
    Cross CE. Right ventricular pressure and coronary flow. Am J Physiol. 1962;202(1):12–6.PubMedGoogle Scholar
  74. 74.
    Hess DS, Bache RJ. Transmural right ventricular myocardial blood flow during systole in the awake dog. Circ Res. 1979;45(1):88–94.PubMedGoogle Scholar
  75. 75.
    Lowensohn HS, Khouri EM, Gregg DE, et al. Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res. 1976;39(6):760–6.PubMedGoogle Scholar
  76. 76.
    Peter RH, Ramo BW, Ratliff N, et al. Collateral vessel development after right ventricular infarction in the pig. Am J Cardiol. 1972;29:56–60.PubMedGoogle Scholar
  77. 77.
    Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol. 2007;49:855–62.PubMedGoogle Scholar
  78. 78.
    Jensen CJ, Jochims M, Hunold P, Sabin GV, Schlosser T, Bruder O. Right ventricular involvement in acute left ventricular myocardial infarction: prognostic implications of MRI findings. Am J Roentgenol. 2010;194:592–8.Google Scholar
  79. 79.
    Rubis P, Podolec P, Kopec G, et al. The dynamic assessment of right-ventricular function and its relation to exercise capacity in heart failure. Eur J Heart Fail. 2010;12:260–7.PubMedGoogle Scholar
  80. 80.
    Clark AL, Swan JW, Laney R, et al. The role of right and left ventricular function in the ventilator response to exercise in chronic heart failure. Circulation. 1994;89:2062–9.PubMedGoogle Scholar
  81. 81.
    Kawut SM, Barr RG, Lima JA, Praestgaard A, Johnson WC, Chahal H, Ogunyankin KO, Bristow MR, Kizer JR, Tandri H, Bluemke DA. Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis (MESA)-right ventricle study. Circulation. 2012;126:1681–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119–26.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Leung CC, Moondra V, Catherwood E, Andrus BW. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010;106:284–6.PubMedGoogle Scholar
  84. 84.
    Maréchaux S, Neicu DV, Braun S, Richardson M, Delsart P, Bouabdallaoui N, Banfi C, Gautier C, Graux P, Asseman P, Pibarot P, Le Jemtel TH, Ennezat PV, HFpEF Study Group. Functional mitral regurgitation: a link to pulmonary hypertension in heart failure with preserved ejection fraction. J Card Fail. 2011;17:806–12.PubMedGoogle Scholar
  85. 85.
    Ghio S, Temporelli PL, Klersy C, Simioniuc A, Girardi B, Scelsi L, Rossi A, Cicoira M, Tarro Genta F, Dini FL. Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail. 2013;15:408–14.PubMedGoogle Scholar
  86. 86.
    Damy T, Kallvikbacka-Bennett A, Goode K, Khaleva O, Lewinter C, Hobkirk J, Nikitin NP, Dubois- Rande JL, Hittinger L, Clark AL, Cleland JG. Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J Card Fail. 2012;18:216–25.PubMedGoogle Scholar
  87. 87.
    Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, Temporelli P, Arena R. Tricuspid annular systolic excursion and pulmonary systolic pressure relationship in heart failure: an index of right ventricular contractility and prognosis. Am J Physiol. 2013;305:H1373–81.Google Scholar
  88. 88.
    Laks MM, Garner D, Swan HJC. Volumes and compliances measured simultaneously in the right and left ventricles of the dog. Circ Res. 1967;20:565–9.PubMedGoogle Scholar
  89. 89.
    Taylor RR, Covell JW, Sonnenblick EH, Ross Jr J. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol. 1967;213:711–8.PubMedGoogle Scholar
  90. 90.
    Piene H. Pulmonary arterial impedance and right ventricular function. Physiol Rev. 1986;66(3):606–52.PubMedGoogle Scholar
  91. 91.
    van den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res. 1982;51:479–85.PubMedGoogle Scholar
  92. 92.
    Bargainer JD. Pulse wave velocity in the main pulmonary artery of the dog. Circ Res. 1967;20:630–7.PubMedGoogle Scholar
  93. 93.
    Bergel DH, Milnor WR. Pulmonary vascular impedance in the dog. Circ Res. 1965;16(5):401–15.PubMedGoogle Scholar
  94. 94.
    Milnor WR, Conti CR, Lewis KB, O’Rourke MF. Pulmonary arterial pulse wave velocity and impedance in man. Circ Res. 1969;25(6):637–49.PubMedGoogle Scholar
  95. 95.
    Murgo JP, Westerhof N. Input impedance of the pulmonary arterial system in normal man. Effects of respiration and comparison to systemic impedance. Circ Res. 1984;54:666–73.PubMedGoogle Scholar
  96. 96.
    Caro CG, Harrison GK, Mognoni P. Pressure wave transmission in the human pulmonary circulation. Cardiovasc Res. 1967;1:91–100.PubMedGoogle Scholar
  97. 97.
    Reuben SR. Wave transmission in the pulmonary arterial system in disease in man. Circ Res. 1970;27:523–9.PubMedGoogle Scholar
  98. 98.
    Dell’Italia LJ, Walsh RA. Acute determinants of the hangout interval in the pulmonary circulation. Am Heart J. 1988;116:1289–97.PubMedGoogle Scholar
  99. 99.
    Gleason WL, Braunwald E. Studies on the first derivative of the ventricular pressure pulse in man. J Clin Invest. 1962;41(1):80–91.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Stein PD, Sabbah HN, Anbe DT, et al. Performance of the failing and nonfailing right ventricle of patients with pulmonary hypertension. Am J Cardiol. 1979;44:1050–5.PubMedGoogle Scholar
  101. 101.
    Kussmaul WG, Altschuler WH, Mathai WK, Laskey WK. Right ventricular-vascular interaction in congestive heart failure. Importance of low-frequency impedance. Circulation. 1993;88:1010–5.PubMedGoogle Scholar
  102. 102.
    Pagnamenta A, Dewachter C, McEntee K, Fesler P, Brimioulle S, Naeije R. Early right ventriculo-arterial uncoupling in borderline pulmonary hypertension on experimental heart failure. J Appl Physiol. 2010;109:1080–5.PubMedGoogle Scholar
  103. 103.
    Drazner MH, Brown RN, Kaiser PA, Cabuay B, Lewis NP, Semigran MJ, Torre-Amione G, Naftel DC, Kirklin JK. Relationship of right- and left-sided filling pressures in patients with advanced heart failure: a 14-year multi-institutional analysis. J Heart Lung Transplant. 2012;31:67–72.PubMedGoogle Scholar
  104. 104.
    Campbell P, Drazner MH, Kato M, Lakdawala N, Palardy M, Nohria A, Stevenson LW. Mismatch of right- and left-sided filling pressures in chronic heart failure. J Card Fail. 2011;17:561–8.PubMedGoogle Scholar
  105. 105.
    Drazner MH, Velez-Martinez M, Ayers CR, Reimold SC, Thibodeau JT, Mishkin JD, Mammen PP, Markham DW, Patel CB. Relationship of right- to left-sided ventricular filling pressures in advanced heart failure: insights from the ESCAPE trial. Circ Heart Fail. 2013;6:264–70.PubMedGoogle Scholar
  106. 106.
    Coma-Canella I, Lopez-Sendon J, Gamallo C. Low output syndrome in right ventricular infarction. Am Heart J. 1979;98:613–20.PubMedGoogle Scholar
  107. 107.
    Lloyd EA, Gersh BJ, Kennelly BM. Hemodynamic spectrum of “dominant” right ventricular infarction in 19 patients. Am J Cardiol. 1981;48:1016–22.PubMedGoogle Scholar
  108. 108.
    Jensen DP, Goolsby JP, Oliva PB. Hemodynamic pattern resembling pericardial construction after acute inferior myocardial infarction with right ventricular infarction. Am J Cardiol. 1978;42:858–61.PubMedGoogle Scholar
  109. 109.
    Lopez-Sendon J, Coma-Cannella I, Gamallo C. Sensitivity and specificity of hemodynamic criteria in the diagnosis of acute right ventricular infarction. Circulation. 1981;64:515–25.PubMedGoogle Scholar
  110. 110.
    Dell’Italia LJ, Starling MR, O’Rourke RA. Physical examination for exclusion of hemodynamically important right ventricular infarction. Ann Intern Med. 1983;99:608–11.PubMedGoogle Scholar
  111. 111.
    Meyer P, Ekundayo OJ, Adamopoulos C, Mujib M, Aban I, White M, Aronow WS, Ahmed A. A propensity-matched study of elevated jugular venous pressure and outcomes in chronic heart failure. Am J Cardiol. 2009;103(6):839–44.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Ludbrook PA, Byrne JD, Kurnik PB, McKnight RC. Influence of reduction of preload and afterload by nitroglycerin on left ventricular diastolic pressure-volume relations and relaxation in man. Circulation. 1977;56:937–43.PubMedGoogle Scholar
  113. 113.
    Alderman EL, Glantz SA. Acute hemodynamic interventions shift the diastolic pressure-volume curve in man. Circulation. 1976;54:662–71.PubMedGoogle Scholar
  114. 114.
    Brodie BR, Grossman W, Mann R, McLaurin LP. Effects of sodium nitroprusside on left ventricular diastolic pressure-volume relations. J Clin Invest. 1977;59:59–68.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Ludbrook PA, Byrne JD, Kurnik PB, et al. Influence of right ventricular hemodynamics on left ventricular diastolic pressure-volume relations in man. Circulation. 1979;59:21–31.PubMedGoogle Scholar
  116. 116.
    Dell’Italia LJ, Walsh RA. Right ventricular diastolic pressure-volume relations and regional dimensions during acute alterations in loading conditions. Circulation. 1988;77:1276–82.PubMedGoogle Scholar
  117. 117.
    DiSalvo TG. Pulmonary hypertension and right ventricular failure in left ventricular systolic dysfunction. Curr Opin Cardiol. 2012;27:262–72.Google Scholar
  118. 118.
    Schmeisser A, Schroetter H, Vraun-Dulleaus RC. Management of pulmonary hypertension in left heart disease. Ther Adv Cardiovasc Dis. 2013;7(3):131–51.PubMedGoogle Scholar
  119. 119.
    Gavazzi A, Ghio S, Scelsi L, Campana C, Klersy C, Serio A, Raineri C, Tavazzi L. Response of the right ventricle to acute pulmonary vasodilation predicts the outcome in patients with advanced heart failure and pulmonary hypertension. Am Heart J. 2003;145(2):310–6.PubMedGoogle Scholar
  120. 120.
    Aronson D, Amon E, Dragu R, Burger A. Relationship between reactive pulmonary hypertension and mortality in patients with acute decompensated heart failure. Circ Heart Fail. 2011;4:644–50.PubMedGoogle Scholar
  121. 121.
    Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66.PubMedGoogle Scholar
  122. 122.
    Chatterjee NA, Lewis GD. What is the prognostic significance of pulmonary hypertension in heart failure? Circ Heart Fail. 2011;4:541–5.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134:44–54.PubMedGoogle Scholar
  124. 124.
    Kalra PR, Moon JC, Coats AJ. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol. 2002;85:195–7.PubMedGoogle Scholar
  125. 125.
    Lewis GD, Lachmann J, Camuso J, et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007;115(1):59–66.PubMedGoogle Scholar
  126. 126.
    Guazzi M, Tumminello G, Di Marco F, Fiorentini C, Guazzi MD. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol. 2004;44:2339–48.PubMedGoogle Scholar
  127. 127.
    Lewis GD, Shah R, Shahzad K. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.PubMedGoogle Scholar
  128. 128.
    Guazzi M, Samaja M, Arena R, et al. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50:2136–44.PubMedGoogle Scholar
  129. 129.
    Guazzi M, Vincenzi M, Arena R, Guazzi MD. PDE5-inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4:8–17.PubMedGoogle Scholar
  130. 130.
    Kass DA. Res-erection of Viagra as a heart drug. Circ Heart Fail. 2011;4:2–4.PubMedGoogle Scholar
  131. 131.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–22.PubMedGoogle Scholar
  132. 132.
    Kim KH, Kim YJ, Ohn JH, Yang J, Lee SE, Lee SW, Kim HK, Seo JW, Sohn DW. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation. Benefits of ventricular remodeling and exercise capacity. Circulation. 2012;125(11):1390–401.PubMedGoogle Scholar
  133. 133.
    Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.PubMedGoogle Scholar
  134. 134.
    DiBianco R, Shabetai R, Kostuk W, Moran J, Schlant RC, Wright R. A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med. 1989;320:677–83.PubMedGoogle Scholar
  135. 135.
    Ghio S, Bonderman D, Felix SB, et al. Left ventricular systolic dysfunction associated with pulmonary hypertension riociguat trial (LEPHT): rationale and design. Eur J Heart Fail. 2012;14:946–53.PubMedGoogle Scholar
  136. 136.
    Late-Breaking Clinical Trial Abstracts. Circulation. 2012;126:2776–99.Google Scholar
  137. 137.
    Bristow MR, Minobe W, Rasmussen R, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992;89(3):803–15.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Wang GY, McCloskey DT, Turcato S, et al. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol. 2006;291:H2013–7.Google Scholar
  139. 139.
    Wang G-Y, Yeh C-C, Hensen BC, et al. Heart failure switches the RV α1-adrenergic inotropic response from negative to positive. Am J Physiol. 2010;298:H213–20.Google Scholar
  140. 140.
    Tanaka H, Manita S, Matsuda T, et al. Sustained negative inotropism mediated by alpha-adrenoceptors in adult mouse myocardia: developmental conversion from positive response in the neonate. Br J Pharmacol. 1995;114:673–7.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Jensen BC, Swigart PM, De Marco T, et al. Alpha-1-adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail. 2009;2:654–63.PubMedPubMedCentralGoogle Scholar
  142. 142.
    White M, Desai RV, Guichard JL, Mujib M, Aban IB, Ahmed MI, Feller MA, de Denus S, Ahmed A. Bucindolol, systolic blood pressure, and outcomes in systolic heart failure: a prespecified post hoc analysis of BEST. Can J Cardiol. 2012;28(3):354–9.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Desai RV, Guichard JL, Mujib M, Ahmed MI, Feller MA, Fonarow GC, Meyer P, Iskandrian AE, Bogaard HJ, White M, Aban IB, Aronow WS, Deedwania P, Waagstein F, Ahmed A. Reduced right ventricular ejection fraction and increased mortality in chronic systolic heart failure patients receiving beta-blockers: insights from the BEST trial. Int J Cardiol. 2013;163(1):61–7.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationship of the canine right ventricle. Circ Res. 1979;44:309–15.PubMedGoogle Scholar
  145. 145.
    Dell’Italia LJ, Walsh RA. Application of a time varying elastance model to right ventricular performance in man. Cardiovasc Res. 1988;22:864–74.PubMedGoogle Scholar
  146. 146.
    Brown KA, Ditchey RV. Human right ventricular end-systolic pressure-volume relation defined by maximal elastance. Circulation. 1988;78:81–91.PubMedGoogle Scholar
  147. 147.
    Borgdorff MA, Bartelds B, Dickinson MG, Steendijk P, de Vroomen M, Berger RM. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol. 2013;305(3):H354–64.Google Scholar
  148. 148.
    Spann Jr JF, Buccino RA, Sonnenblick EH, Braunwald E. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ Res. 1967;21:341–54.PubMedGoogle Scholar
  149. 149.
    Cooper IV G, Satava Jr RM, Harrison CE, Coleman III HN. Mechanism for the abnormal energetics of pressure-induced hypertrophy of cat myocardium. Circ Res. 1973;33:213–23.PubMedGoogle Scholar
  150. 150.
    Cooper IV G, Satava RM, Harrison CE, Coleman III HN. Normal myocardial function and energetics after reversing pressure-overload hypertrophy. Am J Physiol. 1974;226(5):1158–65.PubMedGoogle Scholar
  151. 151.
    Gunning JF, Coleman III HN. Myocardial oxygen consumption during experimental hypertrophy and congestive heart failure. J Mol Cell Cardiol. 1973;5:25–38.PubMedGoogle Scholar
  152. 152.
    Bishop SP, Melsen LR. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Clin Res. 1976;39(2):238–45.Google Scholar
  153. 153.
    Cooper IV G, Tomanek RJ, Ehrhardt JC, Marcus ML. Chronic progressive pressure overload of the cat right ventricle. Circ Res. 1981;48(4):488–97.PubMedGoogle Scholar
  154. 154.
    Cooper IV G, Marino TA. Complete reversibility of cat right ventricular chronic progressive pressure overload. Circ Res. 1984;54:323–31.PubMedGoogle Scholar
  155. 155.
    Drake JI, Gomez-Arroyo J, Dumur CI, Kraskauskas D, Natarajan R, Bogaard HJ, Fawcett P, Voelkel NF. Chronic carvedilol treatment partially reverses the right ventricular failure transcriptional profile in experimental pulmonary hypertension. Physiol Genomics. 2013;45(12):449–61.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, Hoke NN, Kraskauskas D, Kasper M, Salloum FN, Voelkel NF. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60.PubMedGoogle Scholar
  157. 157.
    Kalogeropoulos AP, Georgiopoulou VV, Borlaug BA, Gheorghiade M, Butler J. Left ventricular dysfunction with pulmonary hypertension: part 2: prognosis, noninvasive evaluation, treatment, and future research. Circ Heart Fail. 2013;6:584–93.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Dell’Italia LJ. Translational success stories: angiotensin II receptor blockers in CHF. Circ Res. 2011;109:437–52.PubMedGoogle Scholar
  159. 159.
    Schiros CG, Ahmed MI, Sanagala T, et al. Ventricular structural remodeling in endurance athletes compared to patients with mitral regurgitation using magnetic resonance imaging with 3-dimensional analysis. Am J Cardiol. 2013;111(7):1067–72.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MedicineUniversity of Alabama and Birmingham Medical CenterBirminghamUSA

Personalised recommendations