Skip to main content

Synaptic Mechanisms and Cognitive Computations Underlying Stress Effects on Cognitive Function

  • Chapter
  • First Online:
  • 846 Accesses

Abstract

The cognitive effects of stress vary depending on a number of factors related to the characteristics of the stressor, the cognitive function under study and individual differences. Identifying the unifying principles that can explain this diversity is one of the main challenges in the field. Here, we attempt to define how variations in stressor intensity affect cognitive function. At the phenomenological level, we confirm the existence of an inverted-U-shaped function to account for varying stress intensities and cognitive performance under certain conditions. At the mechanistic level, we revise potential synaptic mechanisms and computations underlying these diverging effects of stress. Among the synaptic mechanisms, we discuss strong evidence implicating glutamatergic pathways and neural cell adhesion molecules as key mediators of the varying cognitive effects of stress on memory. As computational modeling is emerging as a useful approach to integrate and to reveal neural and cognitive computations underlying complex behaviors, we introduce its basic concepts and explain its recent applications to the field of stress and cognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPAR:

α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor

BCM:

Bienenstock–Cooper–Munro

Ca2 +  :

Calcium

NMDAR:

GluN2B subunit-containing N-Methyl-D-aspartate receptor

LTD:

Long-term depression

LTP:

Long-term potentiation

NCAM:

Neural cell adhesion molecule

NE:

Norepinephrine

PSA-NCAM:

Polysialylated neural cell adhesion molecule

TDRL:

Temporal difference reinforcement learning

HPA axis:

Hypothalamus-pituitary-adrenocortical axis

DA:

Dopamine

References

  • Akirav I, Richter-Levin G. Mechanisms of amygdala modulation of hippocampal plasticity. J Neurosci. 2002;22:9912–21.

    CAS  PubMed  Google Scholar 

  • Andreano JM, Cahill L. Sex influences on the neurobiology of learning and memory. Learn Mem. 2009;16:248–66.

    Article  PubMed  Google Scholar 

  • Armario A, Daviu N, Muñoz-Abellán C, Rabasa C, Fuentes S, Belda X, Gagliano H, Nadal R. What can we know from pituitary-adrenal hormones about the nature and consequences of exposure to emotional stressors? Cell Mol Neurobiol. 2012;32:749–58.

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

    Article  CAS  PubMed  Google Scholar 

  • Behrens TE, Woolrich MW, Walton ME, Rushworth MF. Learning the value of information in an uncertain world. Nat Neurosci. 2007;10:1214–21.

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munroe PW. Theory of the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

    CAS  PubMed  Google Scholar 

  • Bisaz R, Conboy L, Sandi C. Learning under stress: a role for the neural cell adhesion molecule NCAM. Neurobiol Learn Mem. 2009;91:333–42.

    Article  CAS  PubMed  Google Scholar 

  • Bisaz R, Schachner M, Sandi C. Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments. Hippocampus. 2011;21:56–71.

    Article  PubMed  Google Scholar 

  • Booij L, Wang D, Lévesque ML, Tremblay RE, Szyf M. Looking beyond the DNA sequence: the relevance of DNA methylation processes for the stress-diathesis model of depression. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120–251.

    Article  Google Scholar 

  • Brown VM, Morey RA. Neural systems for cognitive and emotional processing in posttraumatic stress disorder. Front Psychol. 2012;3:449.

    PubMed Central  PubMed  Google Scholar 

  • Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci. 2004;24:4197–204.

    Article  CAS  PubMed  Google Scholar 

  • Cambon K, Venero C, Berezin V, Bock E, Sandi C. Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience. 2003;122:183–91.

    Article  CAS  PubMed  Google Scholar 

  • Castro JE, Varea E, Márquez C, Cordero MI, Poirier G, Sandi C. Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat. PLoS ONE. 2010;5:e8618.

    Article  PubMed Central  PubMed  Google Scholar 

  • Castro JE, Diessler S, Varea E, Márquez C, Larsen MH, Cordero MI, Sandi C. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology. 2012;37:1209–23.

    Article  CAS  PubMed  Google Scholar 

  • Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM. Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci. 2012;15:1707–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clément Y, Joubert C, Kopp C, Lepicard EM, Venault P, Misslin R, Cadot M, Chapouthier G. Anxiety in mice: a principal component analysis study. Neural Plast. 2007;2007:35457.

    Google Scholar 

  • Conboy L, Bisaz R, Markram K, Sandi C. Role of NCAM in emotion and learning. Adv Exp Med Biol. 2010;663:271–96.

    Article  CAS  PubMed  Google Scholar 

  • Conboy L, Sandi C. Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action. Neuropsychopharmacology. 2010;35:674–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conrad CD. The relationship between acute glucocorticoid levels and hippocampal function depends upon task aversiveness and memory processing stage. Nonlinearity Biol Toxicol Med. 2005;3:57–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordero MI, Merino JJ, Sandi C. Correlational relationship between shock intensity and corticosterone secretion on the establishment and subsequent expression of contextual fear conditioning. Behav Neurosci. 1998;112:885–91.

    Article  CAS  PubMed  Google Scholar 

  • Cordero MI, Venero C, Kruyt ND, Sandi C. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone. Horm Behav. 2003;44:338–45.

    Article  CAS  PubMed  Google Scholar 

  • Corrado G, Doya K. Understanding neural coding through the model-based analysis of decision making. J Neurosci. 2007;27:8178–80.

    Article  CAS  PubMed  Google Scholar 

  • Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ. Cortical substrates for exploratory decisions in humans. Nature. 2006;441:876–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Kloet ER, Oitzl MS, Joëls M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 1999;22:422–6.

    Article  PubMed  Google Scholar 

  • de Quervain DJ, Aerni A, Schelling G, Roozendaal B. Glucocorticoids and the regulation of memory in health and disease. Front Neuroendocrinol. 2009;30:358–70.

    Article  PubMed  Google Scholar 

  • Diamond DM, Bennett MC, Fleshner M, Rose GM. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus. 1992;2:421–30.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007;2007:60803.

    Google Scholar 

  • Diamond DM, Park CR, Heman KL, Rose GM. Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus. 1999;9:542–52.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM. Cognitive, endocrine and mechanistic perspectives on non-linear relationships between arousal and brain function. Nonlinearity Biol Toxicol Med. 2005;3:1–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doya K. Metalearning and neuromodulation. Neural Netw. 2002;15:495–506.

    Article  PubMed  Google Scholar 

  • Doya K. Modulators of decision making. Nat Neurosci. 2008;11:410–6.

    Article  CAS  PubMed  Google Scholar 

  • Doyle E, Nolan PM, Bell R, Regan CM. Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J Neurochem. 1992;59:1570–3.

    Article  CAS  PubMed  Google Scholar 

  • Foley AG, Hartz BP, Gallagher HC, Rønn LC, Berezin V, Bock E, Regan CM. A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem. 2000;74:2607–13.

    Article  CAS  PubMed  Google Scholar 

  • Foster DJ, Morris RG, Dayan P. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus. 2000;10:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12:1062–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A. 2007;104:16311–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groc L, Choquet D, Chaouloff F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci. 2008;11:868–70.

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO The organization of behavior. New York: Wiley; 1949.

    Google Scholar 

  • Herrero AI, Sandi C, Venero C. Individual differences in anxiety trait are related to spatial learning abilities and hippocampal expression of mineralocorticoid receptors. Neurobiol Learn Mem. 2006;86:150–9.

    Article  CAS  PubMed  Google Scholar 

  • Holmes A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev. 2008;32:1293–314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Introini-Collison IB, Ford L, McGaugh JL. Memory impairment induced by intraamygdala beta-endorphin is mediated by noradrenergic influences. Neurobiol Learn Mem. 1995;63:200–5.

    Article  CAS  PubMed  Google Scholar 

  • Joëls M, Krugers H, Karst H. Stress-induced changes in hippocampal function. Prog Brain Res. 2008;167:3–15.

    Article  PubMed  Google Scholar 

  • Joëls M. Corticosteroid effects in the brain: U-shape it. Trends Pharmacol Sci. 2006;27:244–50.

    Article  PubMed  Google Scholar 

  • Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3:453–62.

    CAS  PubMed  Google Scholar 

  • Kim JJ, Song EY, Kosten TA. Stress effects in the hippocampus: synaptic plasticity and memory. Stress. 2006;9:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Yoon KS. Stress: metaplastic effects in the hippocampus. Trends Neurosci. 1998;21:505–9.

    Article  CAS  PubMed  Google Scholar 

  • Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, Bradley B, Nemeroff CB, Holsboer F, Heim CM, Ressler KJ, Rein T, Binder EB. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Knafo S, Venero C, Sánchez-Puelles C, Pereda-Peréz I, Franco A, Sandi C, Suárez LM, Solís JM, Alonso-Nanclares L, Martín ED, Merino-Serrais P, Borcel E, Li S, Chen Y, Gonzalez-Soriano J, Berezin V, Bock E, Defelipe J, Esteban JA. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biol. 2012;10:e1001262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35:1291–301.

    Article  CAS  PubMed  Google Scholar 

  • Laxmi TR, Stork O, Pape HC. Generalisation of conditioned fear and its behavioural expression in mice. Behav Brain Res. 2003;145:89–98.

    Article  PubMed  Google Scholar 

  • Leslie JH, Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol. 2011;94:223–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Fernandez MA, Montaron MF, Varea E, Rougon G, Venero C, Abrous DN, Sandi C. Upregulation of polysialylated neural cell adhesion molecule in the dorsal hippocampus after contextual fear conditioning is involved in long-term memory formation. J Neurosci. 2007;27:4552–61.

    Article  CAS  PubMed  Google Scholar 

  • Luksys G, Gerstner W, Sandi C. Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning. Nat Neurosci. 2009;12:1180–6.

    Article  CAS  PubMed  Google Scholar 

  • Luksys G, Sandi C. Neural mechanisms and computations underlying stress effects on learning and memory. Curr Opin Neurobiol. 2011;21:502–8.

    Article  CAS  PubMed  Google Scholar 

  • Lupien SJ, McEwen BS. The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Rev. 1997;24:1–27.

    Article  CAS  PubMed  Google Scholar 

  • Maggio N, Segal M. Corticosteroid regulation of synaptic plasticity in the hippocampus. Sci World J. 2010 Mar 16;10:462–9. doi: 10.1100/tsw.2010.48.

    Google Scholar 

  • Mars RB, Shea NJ, Kolling N, Rushworth MFS. Model-based analyses: promises, pitfalls, and example applications to the study of cognitive control. Q J Exp Psychol. 2012;65:252–67.

    Article  Google Scholar 

  • McCormick CM, Lewis E, Somley B, Kahan TA. Individual differences in cortisol levels and performance on a test of executive function in men and women. Physiol Behav. 2007;91:87–94.

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL, Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol. 2002;12:205–10.

    Article  CAS  PubMed  Google Scholar 

  • Mendl M. Performing under pressure: stress and cognitive function. Appl Anim Behav Sci. 1999;65:221–44.

    Article  Google Scholar 

  • Merino JJ, Cordero MI, Sandi C. Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. Eur J Neurosci. 2000;12:3283–90.

    Article  CAS  PubMed  Google Scholar 

  • Morris R. Stress and the hippocampus. In Bliss T, editor. The hippocampus book. New York: Oxford University Press; 2006. p. 751–67.

    Google Scholar 

  • O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;28:329–37.

    Article  Google Scholar 

  • Palumbo ML, Canzobre MC, Pascuan CG, Ríos H, Wald M, Genaro AM. Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice: correlation with Th1/Th2 balance after stress exposure. J Neuroimmunol. 2010;218:12–20.

    Article  CAS  PubMed  Google Scholar 

  • Park CR, Zoladz PR, Conrad CD, Fleshner M, Diamond DM. Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats. Learn Mem. 2008;15:271–80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Quirarte GL, de la TIS, Casillas M, Serafín N, Prado-Alcalá RA, Roozendaal B. Corticosterone infused into the dorsal striatum selectively enhances memory consolidation of cued water-maze training. Learn Mem. 2009;16:586–9.

    Article  CAS  PubMed  Google Scholar 

  • Rau V, DeCola JP, Fanselow MS. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev. 2005;29:1207–23.

    Article  PubMed  Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR. A cellular mechanism of reward-related learning. Nature. 2001;413:67–70.

    Article  CAS  PubMed  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33.

    Article  CAS  PubMed  Google Scholar 

  • Roozendaal B, McGaugh JL. Memory modulation. Behav Neurosci. 2011;125:797–824.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salehi B, Cordero MI, Sandi C. Learning under stress: the inverted-U-shape function revisited. Learn Mem. 2010;17:522–30.

    Article  PubMed  Google Scholar 

  • Samejima K, Ueda Y, Doya K, Kimura M. Representation of action-specific reward values in the striatum. Science. 2005;310:1337–40.

    Article  CAS  PubMed  Google Scholar 

  • Sandi C, Merino JJ, Cordero MI, Kruyt ND, Murphy KJ, Regan CM. Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol Psychiatry. 2003 Sep 15;54(6):599–607.

    Google Scholar 

  • Sandi C, Cordero MI, Merino JJ, Kruyt ND, Regan CM, Murphy KJ. Neurobiological and endocrine correlates of individual differences in spatial learning ability. Learn Mem. 2004;11:244–52.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandi C, Cordero MI, Ugolini A, Varea E, Caberlotto L, Large CH. Chronic stress-induced alterations in amygdala responsiveness and behavior-modulation by trait anxiety and corticotropin-releasing factor systems. Eur J Neurosci. 2008;28:1836–48.

    Article  PubMed  Google Scholar 

  • Sandi C, Pinelo-Nava MT. Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast. 2007;2007:78970.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandi C, Richter-Levin G. From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci. 2009;32:312–20.

    Article  CAS  PubMed  Google Scholar 

  • Sandi C, Rose SP, Mileusnic R, Lancashire C. Corticosterone facilitates long-term memory formation via enhanced glycoprotein synthesis. Neuroscience. 1995;69:1087–93.

    Article  CAS  PubMed  Google Scholar 

  • Sandi C, Rose SP. Corticosterone enhances long-term retention in one-day-old chicks trained in a weak passive avoidance learning paradigm. Brain Res. 1994;647:106–12.

    Article  CAS  PubMed  Google Scholar 

  • Sandi C. The role and mechanisms of action of glucocorticoid involvement in memory storage. Neural Plast. 1998;6:41–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandi C. Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci. 2004;5:917–30.

    Article  CAS  PubMed  Google Scholar 

  • Sandi C. Glucocorticoids act through glutamatergic pathways to affect memory processes. Trends Neurosci. 2011;34:165–76.

    Article  CAS  PubMed  Google Scholar 

  • Sandi C. Stress and Cognition. WIRES Cognitive Sci. 2013;4:245–61.

    Article  Google Scholar 

  • Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MV, Trümbach D, Weber P, Wagner K, Scharf SH, Liebl C, Datson N, Namendorf C, Gerlach T, Kühne C, Uhr M, Deussing JM, Wurst W, Binder EB, Holsboer F, Müller MB. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. J Neurosci. 2010;30:16949–58.

    Article  CAS  PubMed  Google Scholar 

  • Scholey AB, Rose SP, Zamani MR, Bock E, Schachner M. A role for the neural cell adhesion molecule in a late, consolidating phase of glycoprotein synthesis six hours following passive avoidance training of the young chick. Neuroscience. 1993;55:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

    Article  CAS  PubMed  Google Scholar 

  • Schwabe L, Wolf OT. Stress modulates the engagement of multiple memory systems in classification learning. J Neurosci. 2012;32:11042–9.

    Article  CAS  PubMed  Google Scholar 

  • Schweighofer N, Bertin M, Shishida K, Okamoto Y, Tanaka SC, Yamawaki S, Doya K. Low-serotonin levels increase delayed reward discounting in humans. J Neurosci. 2008;28:4528–32.

    Article  CAS  PubMed  Google Scholar 

  • Sejnowski TJ, Tesauro G. The Hebb rule for synaptic plasticity: algorithms and implementations. In Byrne JH, Berry WO, editors. Neural models of plasticity. New York: Academic; 1989. pp. 94–103.

    Chapter  Google Scholar 

  • Shors TJ. Learning during stressful times. Learn Mem. 2004;11:137–44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Steckler T. The neuropsychology of stress. In: Steckler T, Kalin NH, Reul JMHM, editors. Handbook of stress and the brain part 1: the neurobiology of stress. Amsterdam: Elsevier; 2005. p. 25.

    Chapter  Google Scholar 

  • Strösslin T, Sheynikhovich D, Chavarriaga R, Gerstner W. Robust self-localisation and navigation based on hippocampal place cells. Neural Netw. 2005;18:1125–40.

    Article  PubMed  Google Scholar 

  • Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge: MIT Press; 1998.

    Google Scholar 

  • van den Bos R, Harteveld M, Stoop H. Stress and decision-making in humans: performance is related to cortisol reactivity, albeit differently in men and women. Psychoneuroendocrinology. 2009;34:1449–58.

    Article  PubMed  Google Scholar 

  • van Stegeren AH, Roozendaal B, Kindt M, Wolf OT, Joëls M. Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiol Learn Mem. 2010;93:56–65.

    Article  PubMed  Google Scholar 

  • Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W. Spike-based reinforcement learning in continuous state and action space: when policy gradient methods fail. PLoS Comput Biol. 2009;5:e1000586.

    Article  PubMed Central  PubMed  Google Scholar 

  • Venero C, Herrero AI, Touyarot K, Cambon K, López-Fernández MA, Berezin V, Bock E, Sandi C. Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory. Eur J Neurosci. 2006;23:1585–95.

    Article  PubMed  Google Scholar 

  • Venero C, Tilling T, Hermans-Borgmeyer I, Herrero AI, Schachner M, Sandi C. Water maze learning and forebrain mRNA expression of the neural cell adhesion molecule L1. J Neurosci Res. 2004;75:172–81.

    Article  CAS  PubMed  Google Scholar 

  • Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L, Weinberg J, Christie BR, Phillips AG, Wang YT. Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci U S A. 2007;104:11471–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wörgötter F, Porr B. Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput. 2005;17:245–319.

    Article  PubMed  Google Scholar 

  • Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol. 1908;18:459–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luksys, G., Sandi, C. (2014). Synaptic Mechanisms and Cognitive Computations Underlying Stress Effects on Cognitive Function. In: Popoli, M., Diamond, D., Sanacora, G. (eds) Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1056-4_12

Download citation

Publish with us

Policies and ethics