Ionizing Radiation

  • Pieter Johann Maartens
  • Margot Flint
  • Stefan S. du Plessis


The past 50 years have seen a rapid decrease in seminal quality, demonstrating the relevance of an ever-changing world and subsequent variable environmental influences on reproduction. Experts attribute the phenomenon of unexplained male infertility (UMI) to developments in industry, evolving lifestyles and the ensuing effects of environmental changes to the body. The reproductive system is bombarded with toxins, environmental exposures and unhealthy lifestyle choices from its initial development (gestational and pre-pubertal) right through to maturity (adulthood). Such external factors can induce morphologic-, genetic- or oxidative impairment of reproductive tissues and functions. One such factor is ionizing radiation (IR). The effects of IR on reproduction are of growing concern as the number of people exposed to radiation via medical procedures or industrial occupations increase.

This chapter aims to address the issue of IR and its effect on male reproduction, briefly discussing some possible sources of IR as well as some biological effects succeeding IR exposure. Though the studies evaluating the effects of IR on reproduction are few and not without their constraints, there is certainly enough evidence to validate the inclusion of IR to the arsenal of environmental factors that might be partially, if not definitively, responsible for the development of UMI.


Luteinizing Hormone Sertoli Cell Ionize Radiation Assisted Reproductive Technology Reactive Oxidize Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hamada A, Esteves S, Agarwal A. Unexplained male infertility—looking beyond routine semen analysis. Euro Urol Rev. 2012;7(1):90–6.Google Scholar
  2. 2.
    World Health Organization. WHO manual for the standardized investigation and diagnosis of the infertile couple. Cambridge: Cambridge University Press; 2000.Google Scholar
  3. 3.
    Wilson JW, Goldhagen P, Rafnsson V, Clem JM, De Angelis G, Friedberg W. Overview of atmospheric ionizing radiation (AIR) research: SST-present. Adv Space Res. 2003;32(1):3–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Lipshultz L, Sigman M. Office evaluation of the subfertile male. In: Howards S, Lipshultz L, Niederberger C, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 153–76.CrossRefGoogle Scholar
  5. 5.
    Bullock J, Boyle J, Wang MB, Ajello RR. Physiology. Pennsylvania: Harwal Publishing Company; 1984.Google Scholar
  6. 6.
    Lancranjan I, Maicanescu M, Rafaila E, Klepsch I, Popescu HI. Gonadic function in workmen with long-term exposure to microwaves. Health Phys. 1975;29(3):381–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Doyle P, Roman E, Maconochie N, Davies G, Smith PG, Beral V. Primary infertility in nuclear industry employees: report from the nuclear industry family study. Occup Environ Med. 2001;58(8):4.CrossRefGoogle Scholar
  9. 9.
    International Atomic Energy Agency (IAEA). Radiation, people and the environment. Vienna: IAEA; 2004.Google Scholar
  10. 10.
    United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation: sources (Vol 1). Vienna: United Nations Publications; 2000.Google Scholar
  11. 11.
    Clifton DK, Bremner WJ. The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J Androl. 1983;4(6):387–92.PubMedGoogle Scholar
  12. 12.
    Sharma OP, Oswanski MF, Sidhu R, Krugh K, Culler AS, Spangler M, et al. Analysis of radiation exposure in trauma patients at a level I trauma center. J Emerg Med. 2011;41(6):640–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Fleurian G, Perrin J, Ecochard R, Dantony E, Lanteaume A, Achard V, Sari-Minodier I. Occupational exposures obtained by questionnaire in clinical practice and their association with semen quality. J Androl. 2009;30(5):566–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Naysmith TE, Blake DA, Harvey VJ, Johnson NP. Do men undergoing sterilizing cancer treatments have a fertile future? Hum Reprod. 1998;13(11):3250–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Dias FL, Antunes LM, Rezende PA, Carvalho FE, Silva C, Matheus JM, Balarin MA. Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation. Environ Toxicol Pharmacol. 2007;23(2):228–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Sahin A, Tatar A, Oztas S, Seven B, Varoglu E, Yesilyurt A, et al. Evaluation of the genotoxic effects of chronic low-dose ionizing radiation exposure on nuclear medicine workers. Nucl Med Biol. 2009;36(5):575–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 1995;142(2):117–32.PubMedCrossRefGoogle Scholar
  18. 18.
    De Angelis G, Caldora M, Santaquilani M, Scipione R, Verdecchia A. Radiation exposure of civilian airline crew members and associated biological effects due to the atmospheric ionizing radiation environment. Phys Med. 2001;17:258–60.PubMedGoogle Scholar
  19. 19.
    IuIu C, Cheburakova OP. Disorders of spermatogenesis in people working at the clean-up of the Chernobyl nuclear power plant accident. Radiats Biol Radioecol. 1993;33(6):1.Google Scholar
  20. 20.
    Moller AP, Mousseau TA. Biological consequences of Chernobyl: 20 years on. Trends Ecol Evol. 2006;21(4):200–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Belyakov OV, Steinhäusler F, Trott KR. Chernobyl liquidators. The people and the doses. Tenth International Congress of the International Radiation Protection Association: Hiroshima; 2000.Google Scholar
  22. 22.
    Fairlie I. Chernobyl: consequences of the catastrophe for people and the environment. Radiat Protect Dosim. 2010;141(1):97–101.CrossRefGoogle Scholar
  23. 23.
    Moller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G. Impaired swimming behaviour and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat Res. 2008;650(2):210–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Fischbein A, Zabludovsky N, Eltes F, Grischenko V, Bartoov B. Ultramorphological sperm characteristics in the risk assessment of health effects after radiation exposure among salvage workers in Chernobyl. Environ Health Perspect. 1997;105(6):1445–9.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ferguson CD, Kazi T, Perera J. Commercial radioactive sources: surveying the security risks. Monterey: Monterey Institute of International Studies, Center for Nonproliferation Studies; 2003.Google Scholar
  26. 26.
    De la Calle JFV, Rachou E, le Martelot MT, Ducot B, Multigner L, Thonneau PF. Male infertility risk factors in a French military population. Hum Reprod. 2001;16(3):481–6.CrossRefGoogle Scholar
  27. 27.
    Schrader SM, Langford RE, Turner TW, Breitenstein MJ, Clark JC, Jenkins BL, et al. Reproductive function in relation to duty assignments among military personnel. Reprod Toxicol. 1998;12(4):3.CrossRefGoogle Scholar
  28. 28.
    Weyandt TB, Schrader SM, Turner TW, Simon SD. Semen analysis of military personnel associated with military duty assignments. Reprod Toxicol. 1996;10(6):521–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Saleh RA, Agarwal A, Kandirali E, Sharma RK, Thomas AJ, Nada EA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78(6):1215–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.PubMedCrossRefGoogle Scholar
  31. 31.
    Maneesh M, Jayalekshmi H. Role of reactive oxygen species and antioxidants on pathophysiology of male reproduction. Indian J Clin Biochem. 2006;21(2):80–9.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Aitken RJ, Buckingham D, Harkiss D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil. 1993;97(2):441–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007;33(5):603–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.PubMedGoogle Scholar
  35. 35.
    Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53(8):1945–51.PubMedGoogle Scholar
  37. 37.
    Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin RH, Hildebrand K, Yamamoto J, Rademaker A. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat Res. 1986;174(3):6.Google Scholar
  39. 39.
    Jennet S. Human physiology. 1st ed. London: Churchill Livingstone; 1989.Google Scholar
  40. 40.
    Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol. 2002;56(6):755–8.CrossRefGoogle Scholar
  41. 41.
    Moghbeli-Nejad S, Mozdarani H, Behmanesh M, Rezaiean Z, Fallahi P. Genome instability in AZFc region on Y chromosome in leukocytes of fertile and infertile individuals following exposure to gamma radiation. J Assist Reprod Genet. 2012;29(1):53–61.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Xu G, Intano GW, McCarrey JR, Walter RB, McMahan CA, Walter CA. Recovery of a low mutant frequency after ionizing radiation-induced mutagenesis during spermatogenesis. Mutat Res. 2008;654(2):150–7.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Nikjoo H, O’Neill P, Wilson WE, Goodhead DT. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res. 2001;156:577–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122(4):497–506.PubMedCrossRefGoogle Scholar
  46. 46.
    Duru NK, Morshedi M, Schuffner A, Oehninger S. Semen treatment with progesterone and/or acetyl-L-carnitine does not improve sperm motility or membrane damage after cryopreservation-thawing. Fertil Steril. 2000;74(4):715–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramos L, Wetzels AM. Low rates of DNA fragmentation in selected motile human spermatozoa assessed by the TUNEL assay. Hum Reprod. 2001;16(8):1703–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Kullisaar T, Turk S, Punab M, Korrovits P, Kisand K, Rehema A, Zilmer M, Mandar R. Oxidative stress in leucocytospermic prostatitis patients: preliminary results. Andrologia. 2007;40:11.Google Scholar
  49. 49.
    Shamsi MB, Venkatesh S, Tanwar M, Talwar P, Sharma RK, Dhawan A, et al. DNA integrity and semen quality in men with low seminal antioxidant levels. Mutat Res. 2009;665(1–2):29–36.PubMedCrossRefGoogle Scholar
  50. 50.
    Philpott A, Leno GH. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell. 1992;69(5):759–67.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakayama K, Milbourne A, Schover LR, Champlin RE, Ueno NT. Gonadal failure after treatment of hematologic malignancies: from recognition to management for health-care providers. Nat Clin Pract Oncol. 2008;2:78–89.CrossRefGoogle Scholar
  52. 52.
    Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29(1):41–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.PubMedGoogle Scholar
  54. 54.
    de Lamirande E, Gagnon C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma. Fertil Steril. 1993;59(6):1291–5.PubMedGoogle Scholar
  55. 55.
    Agarwal A, Ranganathan P, Kattal N, Pasqualotto F, Hallak J, Khayal S, et al. Fertility after cancer: a prospective review of assisted reproductive outcome with banked semen specimens. Fertil Steril. 2004;81(2):342–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101 Suppl 2:109–16.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Yau I, Vuong T, Garant A, Ducruet T, Doran P, Faria S, et al. Risk of hypogonadism from scatter radiation during pelvic radiation in male patients with rectal cancer. Int J Radiat Oncol Biol Phys. 2009;74(5):1481–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Dohle GR. Male infertility in cancer patients: review of the literature. Int J Urol. 2010;17(4):327–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Lass A, Akagbosu F, Brinsden P. Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod Update. 2001;7(4):370–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Tempest HG, Ko E, Chan P, Robaire B, Rademaker A, Martin RH. Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod. 2008;23(2):251–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Barber HR. The effect of cancer and its therapy upon fertility. Int J Fertil Steril. 1981;26(4):250–9.Google Scholar
  62. 62.
    Shin D, Lo KC, Lipshultz LI. Treatment options for the infertile male with cancer. J Natl Cancer Inst Monogr. 2005;34:48–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Feldschuh J, Brassel J, Durso N, Levine A. Successful sperm storage for 28 years. Fertil Steril. 2005;84(4):1017.PubMedCrossRefGoogle Scholar
  64. 64.
    Ohta H, Wakayama T. Generation of normal progeny by intracytoplasmic sperm injection following grafting of testicular tissue from cloned mice that died postnatally. Biol Reprod. 2005;73(3):390–5.PubMedCrossRefGoogle Scholar
  65. 65.
    de Rooij DG, van de Kant HJ, Dol R, Wagemaker G, van Buul PP, van Duijn-Goedhart A, et al. Long-term effects of irradiation before adulthood on reproductive function in the male rhesus monkey. Biol Reprod. 2002;66(2):486–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Saalu LC. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci. 2010;13(9):413–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pieter Johann Maartens
    • 1
  • Margot Flint
    • 2
  • Stefan S. du Plessis
    • 1
  1. 1.Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityTygerbergSouth Africa
  2. 2.Division of Medical Physiology, Faculty of Medicine and Health SciencesStellenbosch UniversityTygerbergSouth Africa

Personalised recommendations