Skip to main content

Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects

  • Conference paper
  • First Online:
Advances in Fetal and Neonatal Physiology

Abstract

We have previously reported that the increase in vasodilator production in an ovine model pregnancy is underpinned by an increase in connexin 43 (Cx43) gap junction function, so allowing more uterine artery endothelial cells to produce a more sustained Ca2+ burst response to agonist stimulation. Since activation of endothelial nitric oxide synthase (eNOS) requires elevated [Ca2+]i, it follows that the direct result of enhanced bursting in turn is an increase in nitric oxide (NO) production per cell from more cells, and for a longer period of time. Preeclampsia (PE) is associated with endothelial vasodilatory dysfunction, and the endocrine profile of women with PE includes an increase in a number of factors found in wound sites. The common action of these growth factors and cytokines in wound sites is to mediate Cx43 dysfunction through kinase phosphorylation and closure. Translational studies are now needed to establish if inhibitory phosphorylation of Cx43 in human endothelium is the cause of endothelial dysfunction in PE subjects and if so, to identify the kinase pathways best targeted for therapy in PE subjects. Consistent with this we have already shown endothelial Ca2+ and NO responses of human umbilical vein from normal subjects are similar to that of ovine pregnant uterine artery, and that those same responses in cords from PE subjects are blunted to levels more typical of nonpregnant uterine artery. In this review we summarize the further evidence that growth factors and cytokines may indeed mediate endothelial dysfunction in PE subjects through closure of Cx43 gap junctions. We also consider how we may clinically translate our studies to humans by using intact umbilical vein and isolated HUVEC in primary culture for an initial screen of drugs to prevent deleterious Cx43 phosphorylation, with the ultimate goal of reversing PE-related endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284:R245–58.

    CAS  PubMed  Google Scholar 

  2. Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol. 1997;272:R441–63.

    CAS  PubMed  Google Scholar 

  3. Gokina NI, Goecks T. Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries. Am J Physiol Heart Circ Physiol. 2006;290:H2124–35.

    CAS  PubMed  Google Scholar 

  4. Yi FX, Magness RR, Bird IM. Simultaneous imaging of [Ca2+]i and intracellular NO production in freshly isolated uterine artery endothelial cells: effects of ovarian cycle and pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288:R140–8.

    CAS  PubMed  Google Scholar 

  5. Yi F, Boeldt DS, Magness RR, Bird IM. [Ca2+]i signaling vs. eNOS expression as determinants of NO output in uterine artery endothelium: relative roles in pregnancy adaptation and reversal by VEGF165. Am J Physiol Heart Circ Physiol. 2011;300:H1182–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Morschauser TJ, Ramadoss J, Koch JM, Yi FX, Lopez GE, Bird IM, et al. Local effects of pregnancy on connexin proteins that mediate Ca2 + -associated uterine endothelial nitric oxide synthesis. Hypertension. 2014;63(3):589–94.

    CAS  PubMed  Google Scholar 

  7. Yi FX, Boeldt DS, Gifford SM, Sullivan JA, Grummer MA, Magness RR, et al. Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function. Biol Reprod. 2010;82:66–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Solan JL, Lampe PD. Connexin43 phosphorylation: structural changes and biological effects. Biochem J. 2009;419:261–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Boeldt DS, Yi FX, Bird IM. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium—new insights into eNOS regulation through adaptive cell signaling. J Endocrinol. 2011;210:243–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bird IM, Boeldt DS, Krupp J, Grummer MA, Yi FX, Magness RR. Pregnancy, programming and preeclampsia: gap junctions at the nexus of pregnancy-induced adaptation of endothelial function and endothelial adaptive failure in PE. Curr Vasc Pharmacol. 2013;11:712–29.

    CAS  PubMed  Google Scholar 

  11. Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res. 2007;75:247–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Cale JM, Bird IM. Dissociation of endothelial nitric oxide synthase phosphorylation and activity in uterine artery endothelial cells. Am J Physiol Heart Circ Physiol. 2006;290:H1433–45.

    CAS  PubMed  Google Scholar 

  13. Sullivan JA, Grummer MA, Yi FX, Bird IM. Pregnancy-enhanced endothelial nitric oxide synthase (eNOS) activation in uterine artery endothelial cells shows altered sensitivity to Ca2+, U0126, and wortmannin but not LY294002—evidence that pregnancy adaptation of eNOS activation occurs at multiple levels of cell signaling. Endocrinology. 2006;147:2442–57.

    CAS  PubMed  Google Scholar 

  14. Grummer MA, Sullivan JA, Magness RR, Bird IM. Vascular endothelial growth factor acts through novel, pregnancy-enhanced receptor signalling pathways to stimulate endothelial nitric oxide synthase activity in uterine artery endothelial cells. Biochem J. 2009;417:501–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lin S, Fagan KA, Li KX, Shaul PW, Cooper DM, Rodman DM. Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J Biol Chem. 2000;275:17979–85.

    CAS  PubMed  Google Scholar 

  16. Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A. Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50(Ca2+) values for calmodulin binding and enzyme activation. J Biol Chem. 2009;284:11892–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Yi FX, Boeldt DS, Bird IM. Pregnancy induced reprogramming of endothelial function in response to ATP: evidence for post receptor Ca2+ signaling plasticity. In: Gerasimovskaya E, Kaczmarek E, editors. Extracellular ATP and adenosine as the regulators of endothelial cell function. New York, NY: Springer; 2010. p. 197.

    Google Scholar 

  18. Gifford SM, Yi FX, Bird IM. Pregnancy-enhanced store-operated Ca2+ channel function in uterine artery endothelial cells is associated with enhanced agonist-specific transient receptor potential channel 3-inositol 1,4,5-trisphosphate receptor 2 interaction. J Endocrinol. 2006;190:385–95.

    CAS  PubMed  Google Scholar 

  19. Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 2007;94:120–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Lang NN, Luksha L, Newby DE, Kublickiene K. Connexin 43 mediates endothelium-derived hyperpolarizing factor-induced vasodilatation in subcutaneous resistance arteries from healthy pregnant women. Am J Physiol Heart Circ Physiol. 2007;292:H1026–32.

    CAS  PubMed  Google Scholar 

  21. Widgerow AD. Cellular resolution of inflammation—catabasis. Wound Repair Regen. 2012;20:2–7.

    PubMed  Google Scholar 

  22. Richard G, Brown N, Smith LE, Terrinoni A, Melino G, Mackie RM, et al. The spectrum of mutations in erythrokeratodermias—novel and de novo mutations in GJB3. Hum Genet. 2000;106:321–9.

    CAS  PubMed  Google Scholar 

  23. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601.

    PubMed  Google Scholar 

  24. Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I. Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol. 2004;122:1310–20.

    CAS  PubMed  Google Scholar 

  25. Coutinho P, Qiu C, Frank S, Tamber K, Becker D. Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol Int. 2003;27:525–41.

    CAS  PubMed  Google Scholar 

  26. Moreno AP, Lau AF. Gap junction channel gating modulated through protein phosphorylation. Prog Biophys Mol Biol. 2007;94:107–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Márquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD. Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim Biophys Acta. 2012;1818:1985–92.

    PubMed Central  PubMed  Google Scholar 

  28. Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda). 2013;28:93–116.

    Google Scholar 

  29. Laird DW. Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim Biophys Acta. 2005;1711:172–82.

    CAS  PubMed  Google Scholar 

  30. Moreno AP. Connexin phosphorylation as a regulatory event linked to channel gating. Biochim Biophys Acta. 2005;1711:164–71.

    CAS  PubMed  Google Scholar 

  31. Solan JL, Lampe PD. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta. 2005;1711:154–63.

    CAS  PubMed  Google Scholar 

  32. Myatt L, Webster RP. Vascular biology of preeclampsia. J Thromb Haemost. 2009;7:375–84.

    CAS  PubMed  Google Scholar 

  33. Tanbe AF, Khalil RA. Circulating and vascular bioactive factors during hypertension in pregnancy. Curr Bioact Compd. 2010;6:60–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Page NM. The endocrinology of pre-eclampsia. Clin Endocrinol (Oxf). 2002;57:413–23.

    Google Scholar 

  35. Kharfi A, Giguère Y, Sapin V, Massé J, Dastugue B, Forest JC. Trophoblastic remodeling in normal and preeclamptic pregnancies: implication of cytokines. Clin Biochem. 2003;36:323–31.

    CAS  PubMed  Google Scholar 

  36. Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response—a review. Placenta. 2003;24(Suppl A):S21–7.

    PubMed  Google Scholar 

  37. LaMarca BB, Bennett WA, Alexander BT, Cockrell K, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of tumor necrosis factor-alpha. Hypertension. 2005;46:1022–5.

    CAS  PubMed  Google Scholar 

  38. Ozler A, Turgut A, Sak ME, Evsen MS, Soydinc HE, Evliyaoglu O, et al. Serum levels of neopterin, tumor necrosis factor-alpha and Interleukin-6 in preeclampsia: relationship with disease severity. Eur Rev Med Pharmacol Sci. 2012;16:1707–12.

    CAS  PubMed  Google Scholar 

  39. Opsjøn SL, Austgulen R, Waage A. Interleukin-1, interleukin-6 and tumor necrosis factor at delivery in preeclamptic disorders. Acta Obstet Gynecol Scand. 1995;74:19–26.

    PubMed  Google Scholar 

  40. Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol. 1998;40:102–11.

    CAS  PubMed  Google Scholar 

  41. Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol. 1997;37:240–9.

    CAS  PubMed  Google Scholar 

  42. Vince GS, Starkey PM, Austgulen R, Kwiatkowski D, Redman CW. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol. 1995;102:20–5.

    CAS  PubMed  Google Scholar 

  43. Kupferminc MJ, Peaceman AM, Wigton TR, Rehnberg KA, Socol ML. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol. 1994;170:1752–7.

    CAS  PubMed  Google Scholar 

  44. Tosun M, Celik H, Avci B, Yavuz E, Alper T, Malatyalioğlu E. Maternal and umbilical serum levels of interleukin-6, interleukin-8, and tumor necrosis factor-alpha in normal pregnancies and in pregnancies complicated by preeclampsia. J Matern Fetal Neonatal Med. 2010;23:880–6.

    CAS  PubMed  Google Scholar 

  45. Kronborg CS, Gjedsted J, Vittinghus E, Hansen TK, Allen J, Knudsen UB. Longitudinal measurement of cytokines in pre-eclamptic and normotensive pregnancies. Acta Obstet Gynecol Scand. 2011;90:791–6.

    CAS  PubMed  Google Scholar 

  46. Rusterholz C, Hahn S, Holzgreve W. Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia. Semin Immunopathol. 2007;29:151–62.

    CAS  PubMed  Google Scholar 

  47. Freeman DJ, McManus F, Brown EA, Cherry L, Norrie J, Ramsay JE, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension. 2004;44:708–14.

    CAS  PubMed  Google Scholar 

  48. Lockwood CJ, Yen CF, Basar M, Kayisli UA, Martel M, Buhimschi I, et al. Preeclampsia-related inflammatory cytokines regulate interleukin-6 expression in human decidual cells. Am J Pathol. 2008;172:1571–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kauma S, Takacs P, Scordalakes C, Walsh S, Green K, Peng T. Increased endothelial monocyte chemoattractant protein-1 and interleukin-8 in preeclampsia. Obstet Gynecol. 2002;100:706–14.

    CAS  PubMed  Google Scholar 

  50. Banerjee S, Smallwood A, Moorhead J, Chambers AE, Papageorghiou A, Campbell S, et al. Placental expression of interferon-gamma (IFN-gamma) and its receptor IFN-gamma R2 fail to switch from early hypoxic to late normotensive development in preeclampsia. J Clin Endocrinol Metab. 2005;90:944–52.

    CAS  PubMed  Google Scholar 

  51. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod. 2009;80:848–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Rytlewski K, Huras H, Kuśmierska-Urban K, Gałaś A, Reroń A. Leptin and interferon-gamma as possible predictors of cesarean section among women with hypertensive disorders of pregnancy. Med Sci Monit. 2012;18:CR506–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503.

    CAS  PubMed  Google Scholar 

  54. Benyo DF, Miles TM, Conrad KP. Hypoxia stimulates cytokine production by villous explants from the human placenta. J Clin Endocrinol Metab. 1997;82:1582–8.

    CAS  PubMed  Google Scholar 

  55. Koçyigit Y, Atamer Y, Atamer A, Tuzcu A, Akkus Z. Changes in serum levels of leptin, cytokines and lipoprotein in pre-eclamptic and normotensive pregnant women. Gynecol Endocrinol. 2004;19:267–73.

    PubMed  Google Scholar 

  56. Eder DJ, McDonald MT. A role for brain angiotensin II in experimental pregnancy-induced hypertension in laboratory rats. Hypertens Pregnancy. 1987;b6:431–51.

    CAS  Google Scholar 

  57. LaMarca B, Speed J, Fournier L, Babcock SA, Berry H, Cockrell K, et al. Hypertension in response to chronic reductions in uterine perfusion in pregnant rats: effect of tumor necrosis factor-alpha blockade. Hypertension. 2008;52:1161–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Gadonski G, LaMarca BB, Sullivan E, Bennett W, Chandler D, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension. 2006;48:711–6.

    CAS  PubMed  Google Scholar 

  59. Gilbert JS, Babcock SA, Granger JP. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension. 2007;50:1142–7.

    CAS  PubMed  Google Scholar 

  60. Alexander BT, Cockrell KL, Massey MB, Bennett WA, Granger JP. Tumor necrosis factor-alpha-induced hypertension in pregnant rats results in decreased renal neuronal nitric oxide synthase expression. Am J Hypertens. 2002;15:170–5.

    CAS  PubMed  Google Scholar 

  61. Sunderland NS, Thomson SE, Heffernan SJ, Lim S, Thompson J, Ogle R, et al. Tumor necrosis factor alpha induces a model of preeclampsia in pregnant baboons (Papio hamadryas). Cytokine. 2011;56:192–9.

    CAS  PubMed  Google Scholar 

  62. Giardina JB, Green GM, Cockrell KL, Granger JP, Khalil RA. TNF-alpha enhances contraction and inhibits endothelial NO-cGMP relaxation in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2002;283:R130–43.

    CAS  PubMed  Google Scholar 

  63. Chia S, Qadan M, Newton R, Ludlam CA, Fox KA, Newby DE. Intra-arterial tumor necrosis factor-alpha impairs endothelium-dependent vasodilatation and stimulates local tissue plasminogen activator release in humans. Arterioscler Thromb Vasc Biol. 2003;23:695–701.

    CAS  PubMed  Google Scholar 

  64. Zhang DX, Yi FX, Zou AP, Li PL. Role of ceramide in TNF-alpha-induced impairment of endothelium-dependent vasorelaxation in coronary arteries. Am J Physiol Heart Circ Physiol. 2002;283:H1785–94.

    CAS  PubMed  Google Scholar 

  65. Wimalasundera R, Fexby S, Regan L, Thom SA, Hughes AD. Effect of tumour necrosis factor-alpha and interleukin 1beta on endothelium-dependent relaxation in rat mesenteric resistance arteries in vitro. Br J Pharmacol. 2003;138:1285–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lamarca B, Speed J, Ray LF, Cockrell K, Wallukat G, Dechend R, et al. Hypertension in response to IL-6 during pregnancy: role of AT1-receptor activation. Int J Interferon Cytokine Mediator Res. 2011;2011:65–70.

    Google Scholar 

  67. Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol. 2004;286:R233–49.

    CAS  PubMed  Google Scholar 

  68. Hayman R, Brockelsby J, Kenny L, Baker P. Preeclampsia: the endothelium, circulating factor(s) and vascular endothelial growth factor. J Soc Gynecol Investig. 1999;6:3–10.

    CAS  PubMed  Google Scholar 

  69. Taylor CM, Stevens H, Anthony FW, Wheeler T. Influence of hypoxia on vascular endothelial growth factor and chorionic gonadotrophin production in the trophoblast-derived cell lines: JEG, JAr and BeWo. Placenta. 1997;18:451–8.

    CAS  PubMed  Google Scholar 

  70. Jelkmann W. Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem. 2001;47:617–23.

    CAS  PubMed  Google Scholar 

  71. Verlohren S, Stepan H, Dechend R. Angiogenic growth factors in the diagnosis and prediction of pre-eclampsia. Clin Sci (Lond). 2012;122:43–52.

    CAS  Google Scholar 

  72. Kim A, Lee ES, Shin JC, Kim HY. Identification of biomarkers for preterm delivery in mid-trimester amniotic fluid. Placenta. 2013;34:873–8.

    CAS  PubMed  Google Scholar 

  73. Soleymanlou N, Jurisica I, Nevo O, Ietta F, Zhang X, Zamudio S, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90:4299–308.

    CAS  PubMed  Google Scholar 

  74. Hohlagschwandtner M, Knofler M, Ploner M, Zeisler H, Joura EA, Husslein P. Basic fibroblast growth factor and hypertensive disorders in pregnancy. Hypertens Pregnancy. 2002;21:235–41.

    CAS  PubMed  Google Scholar 

  75. Varner MW, Dildy GA, Hunter C, Dudley DJ, Clark SL, Mitchell MD. Amniotic fluid epidermal growth factor levels in normal and abnormal pregnancies. J Soc Gynecol Investig. 1996;3:17–9.

    CAS  PubMed  Google Scholar 

  76. Murakami Y, Kobayashi T, Omatsu K, Suzuki M, Ohashi R, Matsuura T, et al. Exogenous vascular endothelial growth factor can induce preeclampsia-like symptoms in pregnant mice. Semin Thromb Hemost. 2005;31:307–13.

    CAS  PubMed  Google Scholar 

  77. Brockelsby J, Hayman R, Ahmed A, Warren A, Johnson I, Baker P. VEGF via VEGF receptor-1 (Flt-1) mimics preeclamptic plasma in inhibiting uterine blood vessel relaxation in pregnancy: implications in the pathogenesis of preeclampsia. Lab Invest. 1999;79:1101–11.

    CAS  PubMed  Google Scholar 

  78. Svedas E, Islam KB, Nisell H, Kublickiene KR. Vascular endothelial growth factor induced functional and morphologic signs of endothelial dysfunction in isolated arteries from normal pregnant women. Am J Obstet Gynecol. 2003;188:168–76.

    CAS  PubMed  Google Scholar 

  79. Suarez S, Ballmer-Hofer K. VEGF transiently disrupts gap junctional communication in endothelial cells. J Cell Sci. 2001;114:1229–35.

    CAS  PubMed  Google Scholar 

  80. Pepper MS, Meda P. Basic fibroblast growth factor increases junctional communication and connexin 43 expression in microvascular endothelial cells. J Cell Physiol. 1992;153:196–205.

    CAS  PubMed  Google Scholar 

  81. Okamura K, Sato Y, Matsuda T, Hamanaka R, Ono M, Kohno K, et al. Endogenous basic fibroblast growth factor-dependent induction of collagenase and interleukin-6 in tumor necrosis factor-treated human microvascular endothelial cells. J Biol Chem. 1991;266:19162–5.

    CAS  PubMed  Google Scholar 

  82. Xie HQ, Hu VW. Modulation of gap junctions in senescent endothelial cells. Exp Cell Res. 1994;214:172–6.

    CAS  PubMed  Google Scholar 

  83. Gifford SM, Cale JM, Tsoi S, Magness RR, Bird IM. Pregnancy-specific changes in uterine artery endothelial cell signaling in vivo are both programmed and retained in primary culture. Endocrinology. 2003;144:3639–50.

    CAS  PubMed  Google Scholar 

  84. Page TH, Smolinska M, Gillespie J, Urbaniak AM, Foxwell BM. Tyrosine kinases and inflammatory signalling. Curr Mol Med. 2009;9:69–85.

    CAS  PubMed  Google Scholar 

  85. van Rijen HV, van Kempen MJ, Postma S, Jongsma HJ. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine. 1998;10:258–64.

    PubMed  Google Scholar 

  86. Angelini DJ, Hyun SW, Grigoryev DN, Garg P, Gong P, Singh IS, et al. TNF-alpha increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1232–45.

    CAS  PubMed  Google Scholar 

  87. Huang YH, Yang HY, Hsu YF, Chiu PT, Ou G, Hsu MJ. Src contributes to IL6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells. Angiogenesis. 2014;17(2):407–18.

    CAS  PubMed  Google Scholar 

  88. Bird IM, Sullivan JA, Di T, Cale JM, Zhang L, Zheng J, et al. Pregnancy-dependent changes in cell signaling underlie changes in differential control of vasodilator production in uterine artery endothelial cells. Endocrinology. 2000;141:1107–17.

    CAS  PubMed  Google Scholar 

  89. Gifford SM, Grummer MA, Pierre SA, Austin JL, Zheng J, Bird IM. Functional characterization of HUVEC-CS: Ca2+ signaling, ERK 1/2 activation, mitogenesis and vasodilator production. J Endocrinol. 2004;182:485–99.

    CAS  PubMed  Google Scholar 

  90. Deo DD, Axelrad TW, Robert EG, Marcheselli V, Bazan NG, Hunt JD. Phosphorylation of STAT-3 in response to basic fibroblast growth factor occurs through a mechanism involving platelet-activating factor, JAK-2, and Src in human umbilical vein endothelial cells. Evidence for a dual kinase mechanism. J Biol Chem. 2002;277:21237–45.

    CAS  PubMed  Google Scholar 

  91. Kyriakakis E, Cavallari M, Pfaff D, Fabbro D, Mestan J, Philippova M, et al. IL-8-mediated angiogenic responses of endothelial cells to lipid antigen activation of iNKT cells depend on EGFR transactivation. J Leukoc Biol. 2011;90:929–39.

    CAS  PubMed  Google Scholar 

  92. Schraufstatter IU, Trieu K, Zhao M, Rose DM, Terkeltaub RA, Burger M. IL-8-mediated cell migration in endothelial cells depends on cathepsin B activity and transactivation of the epidermal growth factor receptor. J Immunol. 2003;171:6714–22.

    CAS  PubMed  Google Scholar 

  93. Luksha L, Luksha N, Kublickas M, Nisell H, Kublickiene K. Diverse mechanisms of endothelium-derived hyperpolarizing factor-mediated dilatation in small myometrial arteries in normal human pregnancy and preeclampsia. Biol Reprod. 2010;83:728–35.

    CAS  PubMed  Google Scholar 

  94. Ashworth JR, Warren AY, Baker PN, Johnson IR. Loss of endothelium-dependent relaxation in myometrial resistance arteries in pre-eclampsia. Br J Obstet Gynaecol. 1997;104:1152–8.

    CAS  PubMed  Google Scholar 

  95. Kenny LC, Baker PN, Kendall DA, Randall MD, Dunn WR. The role of gap junctions in mediating endothelium-dependent responses to bradykinin in myometrial small arteries isolated from pregnant women. Br J Pharmacol. 2002;136:1085–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Hayman R, Warren A, Brockelsby J, Johnson I, Baker P. Plasma from women with pre-eclampsia induces an in vitro alteration in the endothelium-dependent behaviour of myometrial resistance arteries. BJOG. 2000;107:108–15.

    CAS  PubMed  Google Scholar 

  97. Molvarec A, Gullai N, Stenczer B, Fügedi G, Nagy B, Rigó Jr J. Comparison of placental growth factor and fetal flow Doppler ultrasonography to identify fetal adverse outcomes in women with hypertensive disorders of pregnancy: an observational study. BMC Pregnancy Childbirth. 2013;13:161.

    PubMed Central  PubMed  Google Scholar 

  98. Kiserud T, Eik-Nes SH, Blaas HG, Hellevik LR, Simensen B. Ductus venosus blood velocity and the umbilical circulation in the seriously growth-retarded fetus. Ultrasound Obstet Gynecol. 1994;4:109–14.

    CAS  PubMed  Google Scholar 

  99. Turan OM, Turan S, Gungor S, Berg C, Moyano D, Gembruch U, et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;32(2):160–7.

    CAS  PubMed  Google Scholar 

  100. Rigano S, Bozzo M, Ferrazzi E, Bellotti M, Battaglia FC, Galan HL. Early and persistent reduction in umbilical vein blood flow in the growth-restricted fetus: a longitudinal study. Am J Obstet Gynecol. 2001;185:834–8.

    CAS  PubMed  Google Scholar 

  101. Mahdy Z, Otun HA, Dunlop W, Gillespie JI. The responsiveness of isolated human hand vein endothelial cells in normal pregnancy and in pre-eclampsia. J Physiol. 1998;508:609–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Steinert JR, Wyatt AW, Poston L, Jacob R, Mann GE. Preeclampsia is associated with altered Ca2+ regulation and NO production in human fetal venous endothelial cells. FASEB J. 2002;16:721–3.

    CAS  PubMed  Google Scholar 

  103. Krupp J, Boeldt DS, Yi FX, Grummer MA, Bankowski Anaya HA, Shah DM, et al. The loss of sustained Ca(2+) signaling underlies suppressed endothelial nitric oxide production in preeclamptic pregnancies: implications for new therapy. Am J Physiol Heart Circ Physiol. 2013;305:H969–79.

    CAS  PubMed  Google Scholar 

  104. Van Rijen H, van Kempen MJ, Analbers LJ, Rook MB, van Ginneken AC, Gros D, et al. Gap junctions in human umbilical cord endothelial cells contain multiple connexins. Am J Physiol. 1997;272:C117–30.

    PubMed  Google Scholar 

  105. Gifford SM, Yi FX, Bird IM. Pregnancy-enhanced Ca2+ responses to ATP in uterine artery endothelial cells is due to greater capacitative Ca2+ entry rather than altered receptor coupling. J Endocrinol. 2006;190:373–84.

    CAS  PubMed  Google Scholar 

  106. Mountian I, Manolopoulos VG, De Smedt H, Parys JB, Missiaen L, Wuytack F. Expression patterns of sarco/endoplasmic reticulum Ca(2+)-ATPase and inositol 1,4,5-trisphosphate receptor isoforms in vascular endothelial cells. Cell Calcium. 1999;25:371–80.

    CAS  PubMed  Google Scholar 

  107. Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, et al. Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett. 2009;283:43–51.

    CAS  PubMed  Google Scholar 

  108. Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, et al. Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett. 1998;437:101–6.

    CAS  PubMed  Google Scholar 

  109. Cheng HW, James AF, Foster RR, Hancox JC, Bates DO. VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1768–76.

    CAS  PubMed  Google Scholar 

  110. Zhang S, Hong M, Gao Y. Effect of oxidized LDL on the expression of connexins in cultured human umbilical-vein endothelial cells. Cell Biol Int. 2012;36:497–502.

    PubMed  Google Scholar 

  111. Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.

    CAS  PubMed  Google Scholar 

  112. Orsenigo F, Giampietro C, Ferrari A, Corada M, Galaup A, Sigismund S, et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun. 2012;3:1208.

    PubMed Central  PubMed  Google Scholar 

  113. Sidibé A, Mannic T, Arboleas M, Subileau M, Gulino-Debrac D, Bouillet L, et al. Soluble VE-cadherin in rheumatoid arthritis patients correlates with disease activity: evidence for tumor necrosis factor α-induced VE-cadherin cleavage. Arthritis Rheum. 2012;64:77–87.

    PubMed  Google Scholar 

  114. Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, et al. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol. 2006;208:123–32.

    CAS  PubMed  Google Scholar 

  115. Groten T, Kreienberg R, Fialka I, Huber L, Wedlich D. Altered subcellular distribution of cadherin-5 in endothelial cells caused by the serum of pre-eclamptic patients. Mol Hum Reprod. 2000;6:1027–32.

    CAS  PubMed  Google Scholar 

  116. Zhang Y, Gu Y, Li H, Lucas MJ, Wang Y. Increased endothelial monolayer permeability is induced by serum from women with preeclampsia but not by serum from women with normal pregnancy or that are not pregnant. Hypertens Pregnancy. 2003;22:99–108.

    PubMed  Google Scholar 

  117. Takimoto E, Ishida J, Sugiyama F, Horiguchi H, Murakami K, Fukamizu A. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science. 1996;274:995–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many of the authors studies covered in this review were supported by ongoing funding by NICHD and NHLBI, including awards HL56702, HD050578, HL64601, HL079020, HD069181 and P01 HD38843. Predoctoral Trainees were also supported by T32HD41921 awarded to the Endocrinology and Reproductive Physiology Graduate Training Program at Univ Wisconsin Madison SMPH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Bird .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Boeldt, D.S. et al. (2014). Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_4

Download citation

Publish with us

Policies and ethics