Skip to main content

Calcitonin Gene Related Family Peptides: Importance in Normal Placental and Fetal Development

  • Conference paper
  • First Online:
Advances in Fetal and Neonatal Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 814))

Abstract

Synchronized molecular and cellular events occur between the uterus and the implanting embryo to facilitate successful pregnancy outcome. Nevertheless, the molecular signaling network that coordinates strategies for successful decidualization, placentation and fetal growth are not well understood. The discovery of calcitonin/calcitonin gene-related peptides (CT/CGRP) highlighted new signaling mediators in various physiological processes, including reproduction. It is known that CGRP family peptides including CGRP, adrenomedulin and intermedin play regulatory functions during implantation, trophoblast proliferation and invasion, and fetal organogenesis. In addition, all the CGRP family peptides and their receptor components are found to be expressed in decidual, placental and fetal tissues. Additionally, plasma levels of peptides of the CGRP family were found to fluctuate during normal gestation and to induce placental cellular differentiation, proliferation, and critical hormone signaling. Moreover, aberrant signaling of these CGRP family peptides during gestation has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the CGRP family peptides in these critical processes is explored and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54: 233–46.

    Article  CAS  PubMed  Google Scholar 

  2. Roh J, Chang CL, Bhalla A, Klein C, Hsu SY. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem. 2004;279: 7264–74.

    Article  CAS  PubMed  Google Scholar 

  3. Yallampalli C, Chauhan M, Sathishkumar K. Calcitonin gene-related family peptides in vascular adaptations, uteroplacental circulation and fetal growth. Curr Vasc Pharmacol. 2013;11:641–54.

    Article  CAS  PubMed  Google Scholar 

  4. Breimer LH, MacIntyre I, Zaidi M. Peptides from the calcitonin genes: molecular genetics, structure and function. Biochem J. 1988;255:377–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Copp DH. Calcitonin: discovery, development, and clinical application. Clin Invest Med. 1994;17: 268–77.

    CAS  PubMed  Google Scholar 

  6. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304: 129–35.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987;84: 8628–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest. 1990;85:973–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun. 1993;194:720–5.

    Article  CAS  PubMed  Google Scholar 

  10. Sakata J, Shimokubo T, Kitamura K, Nakamura S, Kangawa K, Matsuo H, et al. Molecular cloning and biological activities of rat adrenomedullin, a hypotensive peptide. Biochem Biophys Res Commun. 1993;195:921–7.

    Article  CAS  PubMed  Google Scholar 

  11. Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, et al. Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem. 2003;278:3293–7.

    Article  CAS  PubMed  Google Scholar 

  12. Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56:235–42.

    CAS  PubMed  Google Scholar 

  13. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393:333–9.

    Article  CAS  PubMed  Google Scholar 

  14. Muff R, Leuthauser K, Buhlmann N, Foord SM, Fischer JA, Born W. Receptor activity modifying proteins regulate the activity of a calcitonin gene-related peptide receptor in rabbit aortic endothelial cells. FEBS Lett. 1998;441:366–8.

    Article  CAS  PubMed  Google Scholar 

  15. Miret JJ, Rakhilina L, Silverman L, Oehlen B. Functional expression of heteromeric calcitonin gene-related peptide and adrenomedullin receptors in yeast. J Biol Chem. 2002;277:6881–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tsatsaris V, Tarrade A, Merviel P, Garel JM, Segond N, Jullienne A, et al. Calcitonin gene-related peptide (CGRP) and CGRP receptor expression at the human implantation site. J Clin Endocrinol Metab. 2002;87: 4383–90.

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Tang F, WS O. Coexpression of adrenomedullin and its receptor component proteins in the reproductive system of the rat during gestation. Reprod Biol Endocrinol. 2010;8:130.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Knerr I, Dachert C, Beinder E, Metzler M, Dotsch J, Repp R, et al. Adrenomedullin, calcitonin gene-related peptide and their receptors: evidence for a decreased placental mRNA content in preeclampsia and HELLP syndrome. Eur J Obstet Gynecol Reprod Biol. 2002;101:47–53.

    Article  PubMed  Google Scholar 

  19. Chauhan M, Elkins R, Balakrishnan M, Yallampalli C. Potential role of intermedin/adrenomedullin 2 in early embryonic development in rats. Regul Pept. 2011;170:65–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hague S, Zhang L, Oehler MK, Manek S, MacKenzie IZ, Bicknell R, et al. Expression of the hypoxically regulated angiogenic factor adrenomedullin correlates with uterine leiomyoma vascular density. Clin Cancer Res. 2000;6:2808–14.

    CAS  PubMed  Google Scholar 

  21. Nikitenko LL, Brown NS, Smith DM, MacKenzie IZ, Bicknell R, Rees MC. Differential and cell-specific expression of calcitonin receptor-like receptor and receptor activity modifying proteins in the human uterus. Mol Hum Reprod. 2001;7:655–64.

    Article  CAS  PubMed  Google Scholar 

  22. Trollmann R, Schoof E, Beinder E, Wenzel D, Rascher W, Dotsch J. Adrenomedullin gene expression in human placental tIssue and leukocytes: a potential marker of severe tIssue hypoxia in neonates with birth asphyxia. Eur J Endocrinol. 2002;147: 711–6.

    Article  CAS  PubMed  Google Scholar 

  23. Minegishi T, Nakamura M, Abe K, Tano M, Andoh A, Yoshida M, et al. Adrenomedullin and atrial natriuretic peptide concentrations in normal pregnancy and pre-eclampsia. Mol Hum Reprod. 1999;5: 767–70.

    Article  CAS  PubMed  Google Scholar 

  24. Gratton RJ, Gluszynski M, Mazzuca DM, Nygard K, Han VK. Adrenomedullin messenger ribonucleic acid expression in the placentae of normal and preeclamptic pregnancies. J Clin Endocrinol Metab. 2003;88: 6048–55.

    Article  CAS  PubMed  Google Scholar 

  25. Marinoni E, Di IR, Letizia C, Villaccio B, Scucchi L, Cosmi EV. Immunoreactive adrenomedullin in human fetoplacental tissues. Am J Obstet Gynecol. 1998; 179:784–7.

    Article  CAS  PubMed  Google Scholar 

  26. Montuenga LM, Martinez A, Miller MJ, Unsworth EJ, Cuttitta F. Expression of adrenomedullin and its receptor during embryogenesis suggests autocrine or paracrine modes of action. Endocrinology. 1997; 138:440–51.

    Article  CAS  PubMed  Google Scholar 

  27. Yotsumoto S, Shimada T, Cui CY, Nakashima H, Fujiwara H, Ko MS. Expression of adrenomedullin, a hypotensive peptide, in the trophoblast giant cells at the embryo implantation site in mouse. Dev Biol. 1998;203:264–75.

    Article  CAS  PubMed  Google Scholar 

  28. Dong YL, Vegiraju S, Chauhan M, Yallampalli C. Expression of calcitonin gene-related peptide receptor components, calcitonin receptor-like receptor and receptor activity modifying protein 1, in the rat placenta during pregnancy and their cellular localization. Mol Hum Reprod. 2003;9:481–90.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Hague S, Manek S, Zhang L, Bicknell R, Rees MC. PCR display identifies tamoxifen induction of the novel angiogenic factor adrenomedullin by a non estrogenic mechanism in the human endometrium. Oncogene. 1998;16:409–15.

    Article  CAS  PubMed  Google Scholar 

  30. Li M, Yee D, Magnuson TR, Smithies O, Caron KM. Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice. J Clin Invest. 2006;116:2653–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Makino I, Makino Y, Yoshihara F, Nishikimi T, Kawarabayashi T, Kangawa K, et al. Decreased mature adrenomedullin levels in feto-maternal tissues of pregnant women with histologic chorioamnionitis. Biochem Biophys Res Commun. 2003;301:437–42.

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM, et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer. 2004;108: 797–804.

    Article  CAS  PubMed  Google Scholar 

  33. Marinoni E, Casciani V, Marianetti V, Di RA, Moscarini M, Di IR. Localization and distribution of adrenomedullin receptor in the human placenta: changes with gestational age. J Reprod Med. 2007; 52:831–8.

    CAS  PubMed  Google Scholar 

  34. Chauhan M, Yallampalli U, Dong YL, Hankins GD, Yallampalli C. Expression of adrenomedullin 2 (ADM2)/intermedin (IMD) in human placenta: role in trophoblast invasion and migration. Biol Reprod. 2009;81:777–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Havemann D, Balakrishnan M, Borahay M, Theiler R, Jennings K, Endsley J, et al. Intermedin/adrenomedullin 2 is associated with implantation and placentation via trophoblast invasion in human pregnancy. J Clin Endocrinol Metab. 2013;98:695–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wong BS, Lam KK, Lee CL, Wong VH, Lam MP, Chu IK, et al. Adrenomedullin enhances invasion of human extravillous cytotrophoblast-derived cell lines by regulation of urokinase plasminogen activator expression and s-nitrosylation. Biol Reprod. 2013; 88:34.

    Article  PubMed  Google Scholar 

  37. Dong YL, Vegiraju S, Gangula PR, Kondapaka SB, Wimalawansa SJ, Yallampalli C. Expression and regulation of calcitonin gene-related peptide receptor in rat placentas. Biol Reprod. 2002;67:1321–6.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura M, Yoshida H, Makita S, Arakawa N, Niinuma H, Hiramori K. Potent and long-lasting vasodilatory effects of adrenomedullin in humans. Comparisons between normal subjects and patients with chronic heart failure. Circulation. 1997;95: 1214–21.

    Article  CAS  PubMed  Google Scholar 

  39. Kim W, Moon SO, Sung MJ, Kim SH, Lee S, So JN, et al. Angiogenic role of adrenomedullin through activation of Akt, mitogen-activated protein kinase, and focal adhesion kinase in endothelial cells. FASEB J. 2003;17:1937–9.

    CAS  PubMed  Google Scholar 

  40. Oehler MK, Hague S, Rees MC, Bicknell R. Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene. 2002;21: 2815–21.

    Article  CAS  PubMed  Google Scholar 

  41. Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krull M, et al. Adrenomedullin reduces endothelial hyperpermeability. Circ Res. 2002;91: 618–25.

    Article  CAS  PubMed  Google Scholar 

  42. Dong Y-L, Green KE, Vegiraju S, Hankins GD, Martin E, Chauhan M, et al. Evidence for decreased CGRP receptors and compromised responsiveness to CGRP of fetoplacental vessels in preeclamptic pregnancies. J Clin Endo Metab. 2005;90:2336–43.

    Article  CAS  Google Scholar 

  43. Zhang X, Green KE, Yallampalli C, Dong YL. Adrenomedullin enhances invasion by trophoblast cell lines. Biol Reprod. 2005;73:619–26.

    Article  CAS  PubMed  Google Scholar 

  44. Li L, Tang F, WS O. Preimplantation antagonism of adrenomedullin action compromises fetoplacental development and reduces litter size. Theriogenology. 2012;77:1846–53.

    Article  CAS  PubMed  Google Scholar 

  45. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. Control of human trophoblast function. Reprod Biol Endocrinol. 2007;5:6.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Knofler M, Saleh L, Bauer S, Galos B, Rotheneder H, Husslein P, et al. Transcriptional regulation of the human chorionic gonadotropin beta gene during villous trophoblast differentiation. Endocrinology. 2004;145:1685–94.

    Article  PubMed  Google Scholar 

  47. Knofler M, Saleh L, Bauer S, Vasicek R, Griesinger G, Strohmer H, et al. Promoter elements and transcription factors involved in differentiation-dependent human chorionic gonadotrophin-alpha messenger ribonucleic acid expression of term villous trophoblasts. Endocrinology. 2000;141:3737–48.

    CAS  PubMed  Google Scholar 

  48. Ringler GE, Kao LC, Miller WL, Strauss III JF. Effects of 8-bromo-cAMP on expression of endocrine functions by cultured human trophoblast cells. Regulation of specific mRNAs. Mol Cell Endocrinol. 1989;61:13–21.

    Article  CAS  PubMed  Google Scholar 

  49. Green KE, Thota C, Hankins GD, Yallampalli C, Dong YL. Calcitonin gene-related peptide stimulates human villous trophoblast cell differentiation in vitro. Mol Hum Reprod. 2006;12:443–50.

    Article  CAS  PubMed  Google Scholar 

  50. Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2007;13:121–41.

    Article  CAS  PubMed  Google Scholar 

  51. Chauhan M, Yallampalli U, Reed L, Yallampalli C. Adrenomedullin 2 antagonist infusion to rats during midgestation causes fetoplacental growth restriction through apoptosis. Biol Reprod. 2006;75:940–7.

    Article  CAS  PubMed  Google Scholar 

  52. Penchalaneni J, Wimalawansa SJ, Yallampalli C. Adrenomedullin antagonist treatment during early gestation in rats causes fetoplacental growth restriction through apoptosis. Biol Reprod. 2004;71: 1475–83.

    Article  CAS  PubMed  Google Scholar 

  53. Hoshimoto K, Hayashi M, Ohkura T. Mature adrenomedullin concentrations in plasma during pregnancy. J Matern Fetal Neonatal Med. 2002;11:126–9.

    Article  CAS  PubMed  Google Scholar 

  54. Miyashita K, Itoh H, Sawada N, Fukunaga Y, Sone M, Yamahara K, et al. Adrenomedullin promotes proliferation and migration of cultured endothelial cells. Hypertens Res. 2003;26(Suppl):S93–8.

    Article  CAS  PubMed  Google Scholar 

  55. Xia CF, Yin H, Borlongan CV, Chao J, Chao L. Adrenomedullin gene delivery protects against cerebral ischemic injury by promoting astrocyte migration and survival. Hum Gene Ther. 2004;15:1243–54.

    Article  CAS  PubMed  Google Scholar 

  56. Gangula PR, Dong YL, Wimalawansa SJ, Yallampalli C. Infusion of pregnant rats with calcitonin gene-related peptide (CGRP)(8-37), a CGRP receptor antagonist, increases blood pressure and fetal mortality and decreases fetal growth. Biol Reprod. 2002;67: 624–9.

    Article  CAS  PubMed  Google Scholar 

  57. Guimond MJ, Luross JA, Wang B, Terhorst C, Danial S, Croy BA. Absence of natural killer cells during murine pregnancy is associated with reproductive compromise in TgE26 mice. Biol Reprod. 1997; 56:169–79.

    Article  CAS  PubMed  Google Scholar 

  58. Guimond MJ, Wang B, Croy BA. Engraftment of bone marrow from severe combined immunodeficient (SCID) mice reverses the reproductive deficits in natural killer cell-deficient tg epsilon 26 mice. J Exp Med. 1998;187:217–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Li M, Schwerbrock NM, Lenhart PM, Fritz-Six KL, Kadmiel M, Christine KS, et al. Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta. J Clin Invest. 2013;123:2408–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF, et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol. 2006;80:572–80.

    Article  CAS  PubMed  Google Scholar 

  61. Ashkar AA, Croy BA. Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin Immunol. 2001;13:235–41.

    Article  CAS  PubMed  Google Scholar 

  62. Hu Y, Dutz JP, MacCalman CD, Yong P, Tan R. von DP. Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-gamma. J Immunol. 2006;177:8522–30.

    Article  CAS  PubMed  Google Scholar 

  63. Lash GE, Otun HA, Innes BA, Kirkley M, De OL, Searle RF, et al. Interferon-gamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels. FASEB J. 2006;20:2512–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kutteh WH. Recurrent pregnancy loss: an update. Curr Opin Obstet Gynecol. 1999;11:435–9.

    Article  CAS  PubMed  Google Scholar 

  65. Nakatsuka M, Habara T, Noguchi S, Konishi H, Kudo T. Increased plasma adrenomedullin in women with recurrent pregnancy loss. Obstet Gynecol. 2003;102: 319–24.

    Article  CAS  PubMed  Google Scholar 

  66. Marinoni E, Di IR, Lucchini C, Di NT, Letizia C, Cosmi EV. Adrenomedullin and nitric oxide synthase at the maternal-decidual interface in early spontaneous abortion. J Reprod Med. 2004;49:153–61.

    CAS  PubMed  Google Scholar 

  67. Marinoni E, Di Netta T, Urban G, Lisi RCE, Di Iorio R. Immunostaining for iNOS and AM is reduced in trophoblast cells in spontaneous abortion. J Soc Gynecol Investig. 2002;9((Suppl 1)):779. Abstract.

    Google Scholar 

  68. Urban G, Marinoni E, Di IR, Lucchini C, Alo P, Di TU. New placental factors: between implantation and inflammatory reaction. Early Pregnancy. 2001;5:70–1.

    CAS  PubMed  Google Scholar 

  69. Dong YL, Vegiraju S, Chauhan M, Gangula PR, Hankins GD, Goodrum L, et al. Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am J Physiol Heart Circ Physiol. 2004;286:H230–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lauria MR, Standley CA, Sorokin Y, Yelian FD, Cotton DB. Adrenomedullin levels in normal and preecplamptic pregnancy at term. J Soc Gyencol Investig. 1999;6:318–21.

    Article  CAS  Google Scholar 

  71. Hata T, Miyazaki K, Matsui K. Decreased circulating adrenomedullin in pre-eclampsia. Lancet. 1997;350: 1600.

    Article  CAS  PubMed  Google Scholar 

  72. Di Iorio R, Marinoni E, Letizia C, Alo P, Villaccio B, Cosmi EV. Adrenomedullin, a new vasoactive peptide, is increased in preeclampsia. Hypertension. 1998;32:758–63.

    Article  CAS  PubMed  Google Scholar 

  73. Di Iorio R, Marinoni E, Letizia C, Cosmi EV. Adrenomedullin in perinatal medicine. Regul Pept. 2003;112:103–13.

    Article  PubMed  Google Scholar 

  74. Jerat S, Morrish DW, Davidge ST, Kaufman S. Effect of adrenomedullin on placental arteries in normal and preeclamptic pregnancies. Hypertension. 2001;37: 227–31.

    Article  CAS  PubMed  Google Scholar 

  75. Kanenishi K, Kuwabara H, Ueno M, Sakamoto H, Hata T. Immunohistochemical adrenomedullin expression is decreased in the placenta from pregnancies with pre-eclampsia. Pathol Int. 2000;50:536–40.

    Article  CAS  PubMed  Google Scholar 

  76. Makino Y, Shibata K, Makino I, Ono Y, Kangawa K, Kawarabayashi T. Expression of adrenomedullin in feto-placental circulation of human normotensive pregnant women and pregnancy-induced hypertensive women. Endocrinology. 1999;140:5439–42.

    Article  CAS  PubMed  Google Scholar 

  77. Makino Y, Shibata K, Makino I, Kangawa K, Kawarabayashi T. Alteration of the adrenomedullin receptor components gene expression associated with the blood pressure in pregnancy-induced hypertension. J Clin Endocrinol Metab. 2001;86:5079–82.

    Article  CAS  PubMed  Google Scholar 

  78. Li H, Dakour J, Jacobs S, Morrish DW. Adrenomedullin production and regulation in normal and preeclamptic placentae. Placenta. 2000;21(Suppl): 97. Abstract.

    CAS  Google Scholar 

  79. Di Iorio R, Marinoni E, Letizia C, Gazzolo D, Lucchini C, Cosmi EV. Adrenomedullin is increased in the fetoplacental circulation in intrauterine growth restriction with abnormal umbilical artery waveforms. Am J Obstet Gynecol. 2000;182:650–4.

    Article  PubMed  Google Scholar 

  80. Yamashiro C, Hayashi K, Yanagihara T, Hata T. Plasma adrenomedullin levels in pregnancies with appropriate for gestational age and small for gestational age infants. J Perinat Med. 2001;29:513–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Yallampalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Yallampalli, C., Chauhan, M., Endsley, J., Sathishkumar, K. (2014). Calcitonin Gene Related Family Peptides: Importance in Normal Placental and Fetal Development. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_20

Download citation

Publish with us

Policies and ethics