Skip to main content

Gap Junction Regulation of Vascular Tone: Implications of Modulatory Intercellular Communication During Gestation

  • Conference paper
  • First Online:
Advances in Fetal and Neonatal Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 814))

Abstract

In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell–cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1:a002576.

    PubMed Central  PubMed  Google Scholar 

  2. Gros DB, Jongsma HJ. Connexins in mammalian heart function. Bioessays. 1996;18:719–30.

    CAS  PubMed  Google Scholar 

  3. Solan JL, Lampe PD. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta. 2005;1171:154–63.

    Google Scholar 

  4. van Veen AA, van Rijen HV, Opthof T. Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res. 2001;51:217–29.

    PubMed  Google Scholar 

  5. Yamasaki H, Krutovskikh V, Mesnil M, Omori Y. Connexin genes and cell growth control. Arch Toxicol. 1996;18:105–14.

    CAS  Google Scholar 

  6. Morschauser TJ, Ramadoss J, Koch JM, Yi FX, Lopez GE, Bird IM, et al. Local effects of pregnancy on connexin proteins that mediate Ca2+-associated uterine endothelial NO synthesis. Hypertension 2013 (In Press)

    Google Scholar 

  7. Yi FX, Boeldt DS, Gifford SM, Sullivan JA, Grummer MA, Magness RR, et al. Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function. Biol Reprod. 2010;82:66–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Sandow SL, Tare M, Coleman HA, Hill CE, Parkington HC. Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circ Res. 2002;90:1108–13.

    CAS  PubMed  Google Scholar 

  9. Coleman HA, Tare M, Parkington HC. Endothelial potassium channels, endothelium- dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol. 2004;31:641–9.

    CAS  PubMed  Google Scholar 

  10. Xia J, Duling BR. Electromechanical coupling and the conducted vasomotor response. Am J Physiol. 1995;269:H2022–30.

    CAS  PubMed  Google Scholar 

  11. Welsh DG, Segal SS. Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol. 1998;274:H178–86.

    CAS  PubMed  Google Scholar 

  12. Alexander DB, Goldberg GS. Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem. 2003;10:2045–58.

    CAS  PubMed  Google Scholar 

  13. Janowiak MA, Magness RR, Habermehl DA, Bird IM. Pregnancy increases ovine uterine artery endothelial cyclooxygenase-1 expression. Endocrinology. 1998;139:765–71.

    CAS  PubMed  Google Scholar 

  14. Cunningham FG, MacDonald PC, Gant NF. Maternal adaptations to pregnancy. In: Cunningham FG, MacDonald PC, Gant NF, editors. Williams obstetrics. 18th ed. Norwalk, CT: Appleton & Lange; 1989.

    Google Scholar 

  15. Magness RR. Maternal cardiovascular and other physiologic responses to the endocrinology of pregnancy. In: Bazer FW, editor. Endocrinology of pregnancy. Totowa, NJ: Humana; 1998. p. 507–39.

    Google Scholar 

  16. Magness RR, Zheng J. Maternal cardiovascular alterations during pregnancy. In: Gluckman PD, Heymann MA, editors. Pediatrics and perinatology: the scientific basis. 2nd ed. London: Arnold Publishing; 1996.

    Google Scholar 

  17. Bird IM, Sullivan JA, Di T, Cale JM, Zhang L, Zheng J, et al. Pregnancy- dependent changes in cell signaling underlie changes in differential control of vasodilator production in uterine artery endothelial cells. Endocrinology. 2000;141:1107–17.

    CAS  PubMed  Google Scholar 

  18. Magness RR, Shaw CE, Phernetton TM, Zheng J, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. II. Pregnancy effects on NO synthase expression. Am J Physiol. 1997;272:H1730–40.

    CAS  PubMed  Google Scholar 

  19. Civitelli R, Ziambaras K, Warlow PM, Lecanda F, Nelson T, Harley J, et al. Regulation of connexin43 expression and function by prostaglandin E2 (PGE2) and parathyroid hormone (PTH) in osteoblastic cells. J Cell Biochem. 1998;68:8–21.

    CAS  PubMed  Google Scholar 

  20. Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX. Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Mol Cell Biol. 2010;30:206–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Broughton PF. Risk factors for preeclampsia. N Engl J Med. 2001;344:925–6.

    Google Scholar 

  22. Lang U, Baker RS, Braems G, Zygmunt M, Kunzel W, Clark KE. Uterine blood flow: a determinant of fetal growth. Eur J Obstet Gynecol Reprod Biol. 2003;110 Suppl 1:S55–61.

    PubMed  Google Scholar 

  23. Leeman L, Fontaine P. Hypertensive disorders of pregnancy. Am Fam Physician. 2008;78:93–100.

    PubMed  Google Scholar 

  24. Zamudio S, Palmer SK, Dahms TE, Berman JC, Young DA, Moore LG. Alterations in uteroplacental blood flow precede hypertension in preeclampsia at high altitude. J Appl Physiol. 1995;79:15–22.

    CAS  PubMed  Google Scholar 

  25. de Wit C, Roos F, Bolz SS, Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics. 2003;13:169–77.

    PubMed  Google Scholar 

  26. Rummery NM, Hill CE. Vascular gap junctions and implications for hypertension. Clin Exp Pharmacol Physiol. 2004;31:659–67.

    CAS  PubMed  Google Scholar 

  27. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83:1359–400.

    CAS  PubMed  Google Scholar 

  28. Söhl G, Willecke K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003;10:173–80.

    PubMed  Google Scholar 

  29. Cottrell GT, Wu Y, Burt JM. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol Cell Physiol. 2002;282:C1469–82.

    CAS  PubMed  Google Scholar 

  30. Brisset AC, Isakson BE, Kwak BR. Connexins in vascular physiology and pathology. Antioxid Redox Signal. 2009;11:267–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol. 2009;278:69–118.

    PubMed Central  PubMed  Google Scholar 

  32. Li X, Simard JM. Connexin45 gap junction channels in rat cerebral vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2001;281:H1890–8.

    CAS  PubMed  Google Scholar 

  33. Tsai CH, Yeh HI, Tian TY, Lee YN, Lu CS, Ko YS. Down-regulating effect of nicotine on connexin43 gap junctions in human umbilical vein endothelial cells is attenuated by statins. Eur J Cell Biol. 2004;82:589–95.

    CAS  PubMed  Google Scholar 

  34. van Kempen MJ, Jongsma HJ. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol. 1999;112:479–86.

    PubMed  Google Scholar 

  35. van Rijen HV, van Kempen MJ, Postma S, Jongsma HJ. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine. 1998;10:258–64.

    PubMed  Google Scholar 

  36. Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, et al. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol. 2006;291:H2047–56.

    CAS  PubMed  Google Scholar 

  37. Haefliger JA, Nicod P, Meda P. Contribution of connexins to the function of the vascular wall. Cardiovasc Res. 2004;62:345–56.

    CAS  PubMed  Google Scholar 

  38. Hill CE, Rummery N, Hickey H, Sandow SL. Heterogeneity in the distribution of vascular gap junctions and connexins: implications for function. Clin Exp Pharmacol Physiol. 2002;29:620–5.

    CAS  PubMed  Google Scholar 

  39. Laird DW. Life cycle of connexins in health and disease. Biochem J. 2006;394:527–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Lye SJ, Nicholson BJ, Mascarenhas M, MacKenzie L, Petrocelli T. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology. 1993;132:2380–6.

    CAS  PubMed  Google Scholar 

  41. Oyamada M, Takebe K, Oyamada Y. Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim Biophys Acta. 1828;2013:118–33.

    Google Scholar 

  42. Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys. 2000;384:205–15.

    CAS  PubMed  Google Scholar 

  43. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Güldenagel M, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem. 2002;383:725–37.

    CAS  PubMed  Google Scholar 

  44. Laird DW, Puranam KL, Revel JP. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J. 1991;273:67–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Crow DS, Beyer EC, Paul DL, Kobe SS, Lau AF. Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts. Mol Cell Biol. 1990;10:1754–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Musil LS, Beyer EC, Goodenough DA. Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol. 1990;116:163–75.

    CAS  PubMed  Google Scholar 

  47. Musil LS, Cunningham BA, Edelman GM, Goodenough DA. Differential phosphorylation of gap junction protein connexin43 in junctional communication-competent and deficient cell lines. J Cell Biol. 1990;111:2077–88.

    CAS  PubMed  Google Scholar 

  48. Musil LS, Goodenough DA. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol. 1991;115:1357–74.

    CAS  PubMed  Google Scholar 

  49. Laird DL, Castillo M, Kasprzak L. Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in Brefeldin A-treated rat mammary tumor cells. J Cell Biol. 1995;131:1193–203.

    CAS  PubMed  Google Scholar 

  50. Lampe PD, Kurata WE, Warn-Cramer B, Lau AF. Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34cdc2 kinase. J Cell Sci. 1998;111:833–41.

    CAS  PubMed  Google Scholar 

  51. Warn-Cramer BJ, Lampe PD, Kurata WE, Kanemitsu MY, Loo LWM, Eckhart W, et al. Characterization of the MAP kinase phosphorylation sites on the connexin43 gap junction protein. J Biol Chem. 1996;271:3779–86.

    CAS  PubMed  Google Scholar 

  52. Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol. 2004;36:1171–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Atkinson MM, Lampe PD, Lin HH, Kollander R, Li XR, Kiang DT. Cyclic AMP modifies the cellular distribution of connexin43 and induces a persistent increase in the junctional permeability of mouse mammary tumor cells. J Cell Sci. 1995;108:3079–90.

    CAS  PubMed  Google Scholar 

  54. Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF, et al. Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci. 2000;113:3037–49.

    CAS  PubMed  Google Scholar 

  55. Yogo K, Ogawa T, Akiyama M, Ishida-Kitagawa N, Sasada H, Sato E, et al. PKA implicated in the phosphorylation of Cx43 induced by stimulation with FSH in rat granulosa cells. J Reprod Dev. 2006;52:321–8.

    CAS  PubMed  Google Scholar 

  56. Bao X, Altenberg GA, Reuss L. Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol Cell Physiol. 2004;286:C647–54.

    CAS  PubMed  Google Scholar 

  57. Duncan JC, Fletcher WH. alpha 1 Connexin (connexin43) gap junctions and activities of cAMP-dependent protein kinase and protein kinase C in developing mouse heart. Dev Dyn. 2002;223:96–107.

    CAS  PubMed  Google Scholar 

  58. Cooper CD, Lampe PD. Casein kinase 1 regulates connexin43 gap junction assembly. J Biol Chem. 2002;277:44962–8.

    CAS  PubMed  Google Scholar 

  59. Cameron SJ, Malik S, Akaike M, Lerner-Marmarosh N, Yan C, Lee JD, et al. Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase1/ERK5 but not ERK1/2 kinase activation. J Biol Chem. 2003;278:18682–8.

    CAS  PubMed  Google Scholar 

  60. Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res. 2002;91:640–7.

    CAS  PubMed  Google Scholar 

  61. Cottrell GT, Lin R, Warn-Cramer BJ, Lau AF, Burt JM. Mechanism of v-Src- and mitogen-activated protein kinase-induced reduction of gap junction communication. Am J Physiol Cell Physiol. 2003;284:C511–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Berthoud VM, Westphale EM, Grigoryeva A, Beyer EC. PKC isoenzymes in the chicken lens and TPA-induced effects on intercellular communication. Invest Ophthalmol Vis Sci. 2000;41:850–8.

    CAS  PubMed  Google Scholar 

  63. Crow DS, Kurata WE, Lau AF. Phosphorylation of connexin43 in cells containing mutant src oncogenes. Oncogene. 1992;7:999–1003.

    CAS  PubMed  Google Scholar 

  64. Filson AJ, Azarnia R, Beyer EC, Loewenstein WR, Brugge JS. Tyrosine phosphorylation of a gap junction protein correlates with inhibition of cell-to-cell communication. Cell Growth Differ. 1990;1:661–8.

    CAS  PubMed  Google Scholar 

  65. Loo LW, Berestecky JM, Kanemitsu MY, Lau AF. Pp60src-mediated phosphorylation of connexin 43, a gap junction protein. J Biol Chem. 1995;270:12751–61.

    CAS  PubMed  Google Scholar 

  66. Reynhout JK, Lampe PD, Johnson RG. An activator of protein kinase C inhibits gap junction communication between cultured bovine lens cells. Exp Cell Res. 1992;198:337–42.

    CAS  PubMed  Google Scholar 

  67. Solan JL, Lampe PD. Connexin43 phosphorylation: structural changes and biological effects. Biochem J. 2009;419:261–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sosinsky GE, Solan JL, Gaietta GM, Ngan L, Lee GJ, Mackey MR, et al. The C-terminus of connexin43 adopts different conformations in the Golgi and gap junction as detected with structure-specific antibodies. Biochem J. 2007;408:375–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. TenBroek EM, Lampe PD, Solan JL, Reynhout JK, Johnson RG. Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP. J Cell Biol. 2001;155:1307–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Yogo K, Ogawa T, Akiyama M, Ishida N, Takeya T. Identification and functional analysis of novel phosphorylation sites in Cx43 in rat primary granulosa cells. FEBS Lett. 2002;531:132–6.

    CAS  PubMed  Google Scholar 

  71. Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX. Effects of mechanical strain on the function of gap junctions in osteocytes are mediated through the prostaglandin E2 receptor. J Biol Chem. 2003;278:43146–56.

    CAS  PubMed  Google Scholar 

  72. Burghardt RC, Barhoumi R, Sewall TC, Bowen JA. Cyclic AMP induces rapid increases in gap junction permeability and changes in the cellular distribution of connexin43. J Membr Biol. 1995;148:243–53.

    CAS  PubMed  Google Scholar 

  73. Straub AC, Johnstone SR, Heberlein KR, Rizzo MJ, Best AK, Boitano S, et al. Site-specific connexin phosphorylation is associated with reduced heterocellular communication between smooth muscle and endothelium. J Vasc Res. 2010;47:277–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kwak BR, Sáez JC, Wilders R, Chanson M, Fishman GI, Hertzberg EL, et al. Effects of cGMP-dependent phosphorylation on rat and human connexin43 gap junction channels. Pflugers Arch. 1995;430:770–8.

    CAS  PubMed  Google Scholar 

  75. Burt JM, Spray DC. Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol. 1988;254:H1206–10.

    CAS  PubMed  Google Scholar 

  76. Matsumura K, Mayama T, Lin H, Sakamoto Y, Ogawa K, Imanaga I. Effects of cyclic AMP on the function of the cardiac gap junction during hypoxia. Exp Clin Cardiol. 2006;11:286–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. De Mello WC. Further studies on the influence of cAMP-dependent protein kinase on junctional conductance in isolated heart cell pairs. J Mol Cell Cardiol. 1991;23:371–9.

    PubMed  Google Scholar 

  78. Shah MM, Martinez AM, Fletcher WH. The connexin43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem. 2002;238:57–68.

    CAS  PubMed  Google Scholar 

  79. TenBroek E, Lampe PD, Taffet SM, Reynhout J, Martyn KD, Kurata WE, et al. Enhanced gap junction assembly following the elevation of cAMP requires full length Cx43. In: Werner R, editor. Gap junctions. Amsterdam: IOS Press; 1998.

    Google Scholar 

  80. Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N. Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res. 2005;97:655–62.

    CAS  PubMed  Google Scholar 

  81. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–7.

    PubMed  Google Scholar 

  82. Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, et al. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998;282:2275–9.

    CAS  PubMed  Google Scholar 

  83. Dudenhausen JW, Dudenhausen R. Adenosine-3′, 5′-monophosphate in amniotic fluid of normal and high-risk pregnancy (author's transl). Z Geburtsh Perinatol. 1976;180:46–50.

    CAS  Google Scholar 

  84. Goser R, Jaschonek K, Kindler D, Keller E, Schindler AE. Plasma cAMP in normal and abnormal human pregnancy. Gynecol Obstet Invest. 1980;11:274–85.

    CAS  PubMed  Google Scholar 

  85. Kopp L, Paradiz G, Tucci JR. Urinary excretion of cyclic 3′,5′-adenosine monophosphate and cyclic 3′,5′-guanosine monophosphate during and after pregnancy. J Clin Endocrinol Metab. 1977;44:590–4.

    CAS  PubMed  Google Scholar 

  86. Ling WY, Marsh JM, LeMaire WJ. Adenosine-3′,5′-monophosphate in the plasma from human pregnancy. J Clin Endocrinol Metab. 1977;44:514–9.

    CAS  PubMed  Google Scholar 

  87. Magness RR. Endothelium-derived vasoactive substances and uterine blood vessels. Semin Perinatol. 1991;15:68–78.

    CAS  PubMed  Google Scholar 

  88. Magness RR, Rosenfeld CR, Hassan A, Shaul PW. Endothelial vasodilator production by uterine and systemic arteries. I. Effects of ANG II on PGI2 and NO in pregnancy. Am J Physiol. 1996;270:H1914–23.

    CAS  PubMed  Google Scholar 

  89. Weathersbee PS, Hebertson RM, Lodge JR. Interrelationship of urinary levels of cyclic 3′,5′-adenosine monophosphate and cyclic 3′,5′-guanosine monophosphate during pregnancy. J Reprod Med. 1979;23:279–83.

    CAS  PubMed  Google Scholar 

  90. Conrad KP, Joffe GM, Kruszyna H, Kruszyna R, Rochelle LG, Smith RP, et al. Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J. 1993;7:566–71.

    CAS  PubMed  Google Scholar 

  91. Conrad KP, Kerchner LJ, Mosher MD. Plasma and 24-h NO(x) and cGMP during normal pregnancy and preeclampsia in women on a reduced NO(x) diet. Am J Physiol. 1999;277:F48–57.

    CAS  PubMed  Google Scholar 

  92. Itoh H, Bird IM, Nakao K, Magness RR. Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic, arteries. Endocrinology. 1998;139:3329–41.

    CAS  PubMed  Google Scholar 

  93. Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol Regul Integr Comp Physiol. 1997;272:R441–63.

    CAS  Google Scholar 

  94. Rosenfeld CR, Cox BE, Roy T, Magness RR. Nitric oxide contributes to estrogen-induced vasodilation of the ovine uterine circulation. J Clin Invest. 1996;98:2158–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Yuen BH, Wittmann B, Staley K. Cyclic adenosine 3′,5′-monophosphate (cAMP) in pregnancy body fluids during normal and abnormal pregnancy. Am J Obstet Gynecol. 1976;125:597–602.

    CAS  PubMed  Google Scholar 

  96. Yuen BH, Wittmann BK, Staley K. Cyclic 3′,5′-adenosine monophosphate in umbilical cord and maternal plasma before and after the onset of parturition. Am J Obstet Gynecol. 1977;128:219–21.

    CAS  PubMed  Google Scholar 

  97. Habermehl DA, Janowiak MA, Vagnoni KE, Bird IM, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. IV. Cyclooxygenase isoform expression during the ovarian cycle and pregnancy in sheep. Biol Reprod. 2000;62:781–8.

    CAS  PubMed  Google Scholar 

  98. Rupnow HL, Phernetton TM, Shaw CE, Modrick ML, Bird IM, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. VII. Estrogen and progesterone effects on eNOS. Am J Physiol Heart Circ Physiol. 2001;280:H1699–705.

    CAS  PubMed  Google Scholar 

  99. Vagnoni KE, Shaw CE, Phernetton TM, Meglin BM, Bird IM, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. III. Ovarian and estrogen effects on NO synthase. Am J Physiol Heart Circ Physiol. 1998;275:H1845–56.

    CAS  Google Scholar 

  100. Di T, Sullivan JA, Rupnow HL, Magness RR, Bird IM. Pregnancy induces expression of cPLA2 in ovine uterine artery but not systemic artery endothelium. J Soc Gynecol Investig. 1999;6:301–6.

    CAS  PubMed  Google Scholar 

  101. Jobe SO, Ramadoss J, Wargin AJ, Magness RR. Estradiol-17β and its cytochrome P450- and catechol-O-methyltransferase-derived metabolites selectively stimulate production of prostacyclin in uterine artery endothelial cells: role of estrogen receptor-α versus estrogen receptor-β. Hypertension. 2013;61:509–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Magness RR, Mitchell MD, Rosenfeld CR. Uteroplacental production of eicosanoids in ovine pregnancy. Prostaglandins. 1990;39:75–88.

    CAS  PubMed  Google Scholar 

  103. Magness RR, Rosenfeld CR, Faucher DJ, Mitchell MD. Uterine prostaglandin production in ovine pregnancy: effects of angiotensin II and indomethacin. Am J Physiol. 1992;263:H188–97.

    CAS  PubMed  Google Scholar 

  104. Magness RR, Shideman CR, Habermehl DA, Sullivan JA, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. V. Effects of ovariectomy, the ovarian cycle, and pregnancy on prostacyclin synthase expression. Prostaglandins Other Lipid Mediat. 2000;60:103–18.

    CAS  PubMed  Google Scholar 

  105. Naden RP, Coultrup S, Arant BS, Rosenfeld CR. Metabolic clearance of angiotensin II in pregnant and nonpregnant sheep. Am J Physiol. 1985;249:E49–55.

    CAS  PubMed  Google Scholar 

  106. Naden RP, Rosenfeld CR. Effect of angiotensin II on uterine and systemic vasculature in pregnant sheep. J Clin Invest. 1981;68:468–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. McLaughlin MK, Roberts JM. Hemodynamic changes, Chapter 3. In: Lindheimer MD, Roberts JM, Cunningham FG, editors. Chesley's hypertensive disorders in pregnancy. 2nd ed. Stamford, CT: Appleton & Lange; 1999. p. 69–102.

    Google Scholar 

  108. Talledo OE, Chesley LC, Zuspan FP. Renin–angiotensin system in normal and toxemic pregnancies III. Differential sensitivity to angiotensin II and norepinephrine in toxemia of pregnancy. Am J Obstet Gynecol. 1968;100:218–21.

    Google Scholar 

  109. Hettiaratchi ES, Pickford M. The effect of oestrogen and progesterone on the pressor action of angiotensin in the rat. J Physiol. 1968;196:447–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Goodman RP, Killam AP, Brash AR, Branch RA. Prostacyclin production during pregnancy: comparison of production during normal pregnancy and pregnancy complicated by hypertension. Am J Obstet Gynecol. 1982;142:817–22.

    CAS  PubMed  Google Scholar 

  111. Lewis PJ, Shepherd GL, Ritter J, Chan SMT, Bolton PJ, Jogee M, et al. Prostacyclin and preeclampsia. Lancet. 1981;317:559.

    Google Scholar 

  112. Walsh SW. Eicosanoids in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2004;70:223–32.

    CAS  PubMed  Google Scholar 

  113. Yamaguchi M, Mori N. 6-Keto prostaglandin F1 alpha, thromboxane B2, and 13,14-dihydro-15-keto prostaglandin F concentrations of normotensive and preeclamptic patients during pregnancy, delivery, and the postpartum period. Am J Obstet Gynecol. 1985;151:121–7.

    CAS  PubMed  Google Scholar 

  114. Gant NF, Whalley PJ, Everett RB, Worley RJ, MacDonald PC. Control of vascular reactivity in pregnancy. Am J Kidney Dis. 1987;9:303–7.

    CAS  PubMed  Google Scholar 

  115. Gant NF, Worley RJ, Everett RB, MacDonald PC. Control of vascular responsiveness during human pregnancy. Kidney Int. 1980;18:253–8.

    CAS  PubMed  Google Scholar 

  116. Magness RR, Gant NF. Control of vascular reactivity in pregnancy: the basis for therapeutic approaches to prevent pregnancy-induced hypertension. Semin Perinatol. 1994;18:45–69.

    CAS  PubMed  Google Scholar 

  117. Magness RR, Phernetton TM, Gibson TC, Chen DB. Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17beta-treated, intact follicular and pregnant sheep. J Physiol. 2005;565:71–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Magness RR, Sullivan JA, Li Y, Phernetton TM, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. VI. Ovarian and pregnancy effects on eNOS and NO(x). Am J Physiol Heart Circ Physiol. 2001;280:H1692–8.

    CAS  PubMed  Google Scholar 

  119. Byers MJ, Zangl A, Phernetton TM, Lopez G, Chen DB, Magness RR. Endothelial vasodilator production by ovine uterine and systemic arteries: ovarian steroid and pregnancy control of ERá and ERâ levels. J Physiol. 2005;565:85–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Pastore MB, Jobe SO, Ramadoss J, Magness RR. ER-á and ER-â in the uterine vascular endothelium during pregnancy: functional implications for regulating uterine blood flow. Semin Reprod Med. 2012;30:46–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ramadoss J, Liao WX, Morschauser TJ, Lopez GE, Patankar MS, Chen DB, et al. Endothelial caveolar hub regulation of adenosine triphosphate-induced endothelial nitric oxide synthase subcellular partitioning and domain-specific phosphorylation. Hypertension. 2012;59:1052–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ramadoss J, Pastore MB, Magness RR. Endothelial caveolar subcellular domain regulation of endothelial nitric oxide synthase. Clin Exper Pharm Physiol. 2013;40:753–64.

    CAS  Google Scholar 

  123. Weiner C, Liu KZ, Thompson L, Herrig J, Chestnut D. Effect of pregnancy on endothelium and smooth muscle: their role in reduced adrenergic sensitivity. Am J Physiol. 1991;261:H1275–83.

    CAS  PubMed  Google Scholar 

  124. Nelson SH, Steinsland OS, Johnson RL, Suresh MS, Gifford A, Ehardt JS. Pregnancy- induced alterations of neurogenic constriction and dilation of human uterine artery. Am J Physiol. 1995;268:H1694–701.

    CAS  PubMed  Google Scholar 

  125. Sprague B, Chesler NC, Magness RR. Shear stress regulation of nitric oxide production in uterine and placental artery endothelial cells: experimental studies and hemodynamic models of shear stresses on endothelial cells. Int J Dev Biol. 2010;54:331–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Kublickiene KR, Lindblom B, Kruger K, Nisell H. Preeclampsia: evidence for impaired shear stress-mediated nitric oxide release in uterine circulation. Am J Obstet Gynecol. 2000;183:160–6.

    CAS  PubMed  Google Scholar 

  127. Li Y, Zheng J, Bird IM, Magness RR. Effects of pulsatile shear stress on nitric oxide production and endothelial cell nitric oxide synthase expression by ovine fetoplacental artery endothelial cells. Biol Reprod. 2003;69:1053–9.

    CAS  PubMed  Google Scholar 

  128. Li Y, Zheng J, Bird IM, Magness RR. Mechanisms of shear stress-induced endothelial nitric-oxide synthase phosphorylation and expression in ovine fetoplacental artery endothelial cells. Biol Reprod. 2004;70:785–96.

    CAS  PubMed  Google Scholar 

  129. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Pilz RB, Casteel DE. Regulation of gene expression by cyclic GMP. Circ Res. 2003;93:1034–46.

    CAS  PubMed  Google Scholar 

  131. Warner TD, Mitchell JA, Sheng H, Murad F. Effects of cyclic GMP on smooth muscle relaxation. Adv Pharmacol. 1994;26:171–94.

    CAS  PubMed  Google Scholar 

  132. Yao J, Hiramatsu N, Zhu Y, Morioka T, Takeda M, Oite T, et al. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells. J Am Soc Nephrol. 2005;16:58–67.

    CAS  PubMed  Google Scholar 

  133. Payne JA, Alexander BT, Khalil RA. Decreased endothelium-dependent NO-cGMP vascular relaxation and hypertension in growth-restricted rats on a high-salt diet. Hypertension. 2005;43:420–7.

    Google Scholar 

  134. Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284:R245–58.

    CAS  PubMed  Google Scholar 

  135. Davidge ST, Stranko CP, Roberts JM. Urine but not plasma nitric oxide metabolites are decreased in women with preeclampsia. Am J Obstet Gynecol. 1996;174:1008–13.

    CAS  PubMed  Google Scholar 

  136. Schiessl B, Strasburger C, Bidlingmaier M, Mylonas I, Jeschke U, Kainer F, et al. Plasma- and urine concentrations of nitrite/nitrate and cyclic guanosinemonophosphate in intrauterine growth restricted and preeclamptic pregnancies. Arch Gynecol Obstet. 2006;274:150–4.

    CAS  PubMed  Google Scholar 

  137. Meyer-Gesch KM, Sun MY, Koch JM, Ramadoss J, Blohowiak SE, Magness RR, et al. Ovine fetal renal development impacted by multiple fetuses and uterine space restriction. J Dev Orig Health Dis. 2013;4:411–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Sun MY, Habeck JM, Meyer KM, Koch JM, Ramadoss J, Blohowiak SE, et al. Ovine uterine space restriction alters placental transferrin receptor and fetal iron status during late pregnancy. Pediatr Res. 2013;73:277–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Meyer KM, Koch JM, Ramadoss J, Kling PJ, Magness RR. Ovine surgical model of uterine space restriction: interactive effects of uterine anomalies and multifetal gestations on fetal and placental growth. Biol Reprod. 2010;83:799–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Gibson TC, Phernetton TM, Wiltbank MC, Magness RR. Development and use of an ovarian synchronization model to study the effects of endogenous estrogen and nitric oxide on uterine blood flow during ovarian cycles in sheep. Biol Reprod. 2004;70:1886–94.

    CAS  PubMed  Google Scholar 

  141. Jobe SO, Tyler CT, Magness RR. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia: implications for vascular dysfunction. Hypertension. 2013;61:480–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Doring B, Shynlova O, Tsui P, Eckardt D, Janssen-Bienhold U, Hofmann F, et al. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J Cell Sci. 2006;119:1715–22.

    PubMed  Google Scholar 

  143. Yi FX, Boeldt DS, Magness RR, Bird IM. [ca2+]i signaling vs. eNOS expression as determinants of NO output in uterine artery endothelium: relative roles in pregnancy adaptation and reversal by VEGF165. Am J Physiol Heart Circ Physiol. 2011;300:H1182–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology. 2009;24:58–71.

    PubMed Central  PubMed  Google Scholar 

  145. Magness RR, Ford SP. Steroid concentrations in uterine lymph and uterine arterial plasma of gilts during the estrous cycle and early pregnancy. Biol Reprod. 1982;27:871–7.

    CAS  PubMed  Google Scholar 

  146. Magness RR, Ford SP. Estrone, estradiol-17 beta and progesterone concentrations in uterine lymph and systemic blood throughout the porcine estrous cycle. J Anim Sci. 1983;57:449–55.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding Sources: Supported by National Institutes of Health grants R25-GM083252 (BCA—ML Carnes, PI); and HL49210, HL87144, HD38843, and HL117341 (RRM, PI).

We wish to thank S. Omar Jobe, Mayra B. Pastore, Mary Y. Sun, Amanda Hankes, Rosalina Villalon Landeros, Jayanth Ramadoss, Jill M. Kock, Gladys E. Lopez, Terrance M. Phernetton, Jason L. Austin, Cindy Goss, and Tim Taylor for their assistance with these studies and manuscript preparation. This work was partial fulfillment of Bryan Ampey’s Ph.D. degree for the Endocrinology Reproductive Physiology Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Magness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Ampey, B.C., Morschauser, T.J., Lampe, P.D., Magness, R.R. (2014). Gap Junction Regulation of Vascular Tone: Implications of Modulatory Intercellular Communication During Gestation. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_11

Download citation

Publish with us

Policies and ethics