Biological Activities of Lasso Peptides and Structure–Activity Relationships

  • Yanyan Li
  • Séverine Zirah
  • Sylvie Rebuffat
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)


Lasso peptides are peptides of bacterial origin that share a specific interlocked topology formed by a macrolactam ring threaded by a peptidic tail that is trapped and locked inside. Bulky side chains of amino acids located in the tail below and above the ring and/or disulphide bridges connecting the ring and the tail ensure this stabilization. The present chapter describes the various bioactivities displayed by lasso peptides, which can act as antagonists of receptors (endothelin receptor, natriuretic system, glucagon receptor), inhibitors of enzymes (smooth muscle myosin light chain kinase (MLCK), prolyloligopeptidase, RNA polymerase), antimicrobials and HIV inhibitors. The links between bioactivities and the lasso peptide topology are pointed.


Receptor antagonist Enzyme inhibitor Endothelin receptor Glucagon receptor Natriuretic system Prolyloligopeptidase RNA polymerase Smooth muscle myosin light chain kinase (MLCK) Antimicrobials Structure–activity relationships 


  1. Abraham RL, Yang T, Blair M, Roden DM, Darbar D (2010) Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J Mol Cell Cardiol 48(1):181–190. doi:10.1016/j.yjmcc.2009.07.020PubMedPubMedCentralGoogle Scholar
  2. Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis JT, Borukhov S, Wang MD, Severinov K (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol Cell 14(6):753–762PubMedGoogle Scholar
  3. Akhova AV, Tkachenko AG (2014) ATP/ADP alteration as a sign of the oxidative stress development in Escherichia coli cells under antibiotic treatment. FEMS Microbiol Lett 353(1):69–73. doi:10.1111/1574-6968.12405PubMedGoogle Scholar
  4. Albesa I, Becerra MC, Battan PC, Paez PL (2004) Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun 317(2):605–609. doi:10.1016/j.bbrc.2004.03.085PubMedGoogle Scholar
  5. Anderson JR, Nawarskas JJ (2010) Pharmacotherapeutic management of pulmonary arterial hypertension. Cardiol Rev 18(3):148–162. doi:10.1097/CRD.0b013e3181d4e921Google Scholar
  6. Antoine TE, Shukla D (2013) Inhibition of myosin light chain kinase can be targeted for the development of new therapies against HSV-1 infection. Antivir Ther 19(1):15–29. doi:10.3851/IMP2661Google Scholar
  7. Ardissone S, Kobayashi H, Kambara K, Rummel C, Noel KD, Walker GC, Broughton WJ, Deakin WJ (2011) Role of BacA in lipopolysaccharide synthesis, peptide transport, and nodulation by Rhizobium sp. strain NGR234. J Bacteriol 193(9):2218–2228. doi:10.1128/JB.01260-10Google Scholar
  8. Arnold MF, Caro-Hernandez P, Tan K, Runti G, Wehmeier S, Scocchi M, Doerrler WT, Walker GC, Ferguson GP (2014) Enteric YaiW is a surface-exposed outer membrane lipoprotein that affects sensitivity to an antimicrobial peptide. J Bacteriol 196(2):436–444. doi:10.1128/JB.01179-13Google Scholar
  9. Artsimovitch I, Vassylyev DG (2006) Is it easy to stop RNA polymerase? Cell Cycle 5(4):399–404Google Scholar
  10. Attina T, Camidge R, Newby DE, Webb DJ (2005) Endothelin antagonism in pulmonary hypertension, heart failure, and beyond. Heart 91(6):825–831PubMedPubMedCentralGoogle Scholar
  11. Authier F, Desbuquois B (2008) Glucagon receptors. Cell Mol Life Sci 65(12):1880–1899. doi:10.1007/s00018-008-7479-6Google Scholar
  12. Baetz NW, Stamer WD, Yool AJ (2012) Stimulation of aquaporin-mediated fluid transport by cyclic GMP in human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 53(4):2127–2132. doi:10.1167/iovs.11-8471PubMedPubMedCentralGoogle Scholar
  13. Bagger JI, Knop FK, Holst JJ, Vilsboll T (2011) Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab 13(11):965–971. doi:10.1111/j.1463-1326.2011.01427.xPubMedGoogle Scholar
  14. Bataille D (1996) Preproglucagon and its processing. In: Lefebvre PJ (ed) Glucagon III Springer, Berlin, pp 31–51Google Scholar
  15. Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125(41):12382–12383PubMedGoogle Scholar
  16. Becerra MC, Albesa I (2002) Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem Biophys Res Commun 297(4):1003–1007PubMedGoogle Scholar
  17. Bellomio A, Rintoul MR, Morero RD (2003) Chemical modification of microcin J25 with diethylpyrocarbonate and carbodiimide: evidence for essential histidyl and carboxyl residues. Biochem Biophys Res Commun 303(2):458–462PubMedGoogle Scholar
  18. Bellomio A, Vincent PA, de Arcuri BF, Farías RN, Morero RD (2007) Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production. J Bacteriol 189(11):4180–4186PubMedPubMedCentralGoogle Scholar
  19. Bennett BD, Bennett GL, Vitangcol RV, Jewett JR, Burnier J, Henzel W, Lowe DG (1991) Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. Hormone pharmacology and application to solid phase screening of synthetic peptide antisera. J Biol Chem 266(34):23060–23067PubMedGoogle Scholar
  20. Bian F, Mao G, Guo M, Wang J, Li J, Han Y, Chen X, Zhang M, Xia G (2012) Gradients of natriuretic peptide precursor A (NPPA) in oviduct and of natriuretic peptide receptor 1 (NPR1) in spermatozoon are involved in mouse sperm chemotaxis and fertilization. J Cell Physiol 227(5):2230–2239. doi:10.1002/jcp.22962PubMedGoogle Scholar
  21. Birnbaumer L (2007) The discovery of signal transduction by G proteins: a personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim Biophys Acta 1768(4):756–771. doi:10.1016/j.bbamem.2006.09.027PubMedPubMedCentralGoogle Scholar
  22. Blier AS, Veron W, Bazire A, Gerault E, Taupin L, Vieillard J, Rehel K, Dufour A, Le Derf F, Orange N, Hulen C, Feuilloley MG, Lesouhaitier O (2011) C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. Microbiology 157 (Pt 7):1929–1944. doi:10.1099/mic.0.046755-0PubMedPubMedCentralGoogle Scholar
  23. Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthelemy M, Prigent Y, Salomón RA, Farías RN, Moreno F, Rebuffat S (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 259(3):747–755PubMedGoogle Scholar
  24. Blond A, Cheminant M, Destoumieux-Garzón D, Segalas-Milazzo I, Peduzzi J, Goulard C, Rebuffat S (2002) Thermolysin-linearized microcin J25 retains the structured core of the native macrocyclic peptide and displays antimicrobial activity. Eur J Biochem 269(24):6212–6222PubMedGoogle Scholar
  25. Bonhivers M, Plancon L, Ghazi A, Boulanger P, le Maire M, Lambert O, Rigaud JL, Letellier L (1998) FhuA, an Escherichia coli outer membrane protein with a dual function of transporter and channel which mediates the transport of phage DNA. Biochimie 80(5–6):363–369PubMedGoogle Scholar
  26. Borukhov S, Nudler E (2008) RNA polymerase: the vehicle of transcription. Trends Microbiol 16(3):126–134. doi:10.1016/j.tim.2007.12.006PubMedGoogle Scholar
  27. Bovy PR (1990) Structure activity in the atrial natriuretic peptide (ANP) family. Med Res Rev 10(1):115–142PubMedGoogle Scholar
  28. Brandt I, Scharpe S, Lambeir AM (2007) Suggested functions for prolyl oligopeptidase: a puzzling paradox. Clin Chim Acta 377(1–2):50–61. doi:10.1016/j.cca.2006.09.001PubMedGoogle Scholar
  29. Braun V (1999) Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist Updat 2(6):363–369. doi:10.1054/drup.1999.0107PubMedGoogle Scholar
  30. Braun W, Wider G, Lee KH, Wuthrich K (1983) Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J Mol Biol 169(4):921–948PubMedGoogle Scholar
  31. Braun M, Killmann H, Maier E, Benz R, Braun V (2002a) Diffusion through channel derivatives of the Escherichia coli FhuA transport protein. Eur J Biochem 269(20):4948–4959Google Scholar
  32. Braun V, Patzer SI, Hantke K (2002b) Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84(5–6):365–380Google Scholar
  33. Braun V, Endriss F (2007) Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 20(3–4):219–231. doi:10.1007/s10534-006-9072-5PubMedGoogle Scholar
  34. Bregman MD, Trivedi D, Hruby VJ (1980) Glucagon amino groups. Evaluation of modifications leading to antagonism and agonism. J Biol Chem 255(24):11725–11731PubMedGoogle Scholar
  35. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70(3):665–699PubMedGoogle Scholar
  36. Buggy JJ, Livingston JN, Rabin DU, Yoo-Warren H (1995) Glucagon-like peptide I receptor chimeras reveal domains that determine specificity of glucagon binding. J Biol Chem 270(13):7474–7478PubMedGoogle Scholar
  37. Buggy JJ, Heurich RO, MacDougall M, Kelley KA, Livingston JN, Yoo-Warren H, Rossomando AJ (1997) Role of the glucagon receptor COOH-terminal domain in glucagon-mediated signaling and receptor internalization. Diabetes 46(9):1400–1405PubMedGoogle Scholar
  38. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104(6):901–912PubMedGoogle Scholar
  39. Carruthers CJ, Unson CG, Kim HN, Sakmar TP (1994) Synthesis and expression of a gene for the rat glucagon receptor. Replacement of an aspartic acid in the extracellular domain prevents glucagon binding. J Biol Chem 269(46):29321–29328PubMedGoogle Scholar
  40. Carter DM, Gagnon JN, Damlaj M, Mandava S, Makowski L, Rodi DJ, Pawelek PD, Coulton JW (2006) Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB. J Mol Biol 357(1):236–251. doi:10.1016/j.jmb.2005.12.039PubMedGoogle Scholar
  41. Cervar-Zivkovic M, Dieber-Rotheneder M, Barth S, Hahn T, Kohnen G, Huppertz B, Lang U, Desoye G (2011) Endothelin-1 stimulates proliferation of first-trimester trophoblasts via the A- and B-type receptor and invasion via the B-type receptor. J Clin Endocrinol Metab 96(11):3408–3415. doi:10.1210/jc.2011-0634PubMedGoogle Scholar
  42. Chakraborty R, Storey E, van der Helm D (2007) Molecular mechanism of ferric siderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals 20(3–4):263–274. doi:10.1007/s10534-006-9060-9PubMedGoogle Scholar
  43. Chalon MC, Bellomio A, Solbiati JO, Morero RD, Farias RN, Vincent PA (2009) Tyrosine 9 is the key amino acid in microcin J25 superoxide overproduction. FEMS Microbial Lett 300 (1):90–96. doi:10.1111/j.1574-6968.2009.01770.xGoogle Scholar
  44. Chalon MC, Wilke N, Pedersen J, Rufini S, Morero RD, Cortez L, Chehin RN, Farias RN, Vincent PA (2011) Redox-active tyrosine residue in the microcin J25 molecule. Biochem Biophys Res Commun 406(3):366–370. doi:10.1016/j.bbrc.2011.02.047PubMedGoogle Scholar
  45. Cho YM, Merchant CE, Kieffer TJ (2012) Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 135(3):247–278. doi:10.1016/j.pharmthera.2012.05.009PubMedGoogle Scholar
  46. Chokekijchai S, Kojima E, Anderson S, Nomizu M, Tanaka M, Machida M, Date T, Toyota K, Ishida S, Watanabe K et al (1995) NP-06: a novel anti-human immunodeficiency virus polypeptide produced by a Streptomyces species. Antimicrob Agents Chemother 39(10):2345–2347PubMedPubMedCentralGoogle Scholar
  47. Chopra I (2007) Bacterial RNA polymerase: a promising target for the discovery of new antimicrobial agents. Curr Opin Investig Drugs 8(8):600–607PubMedGoogle Scholar
  48. Citarella MR, Choi MR, Gironacci MM, Medici C, Correa AH, Fernandez BE (2009) Urodilatin and dopamine: a new interaction in the kidney. Regul Pept 153(1–3):19–24. doi:10.1016/j.regpep.2008.11.009PubMedGoogle Scholar
  49. Claus TH, Pan CQ, Buxton JM, Yang L, Reynolds JC, Barucci N, Burns M, Ortiz AA, Roczniak S, Livingston JN, Clairmont KB, Whelan JP (2007) Dual-acting peptide with prolonged glucagon-like peptide-1 receptor agonist and glucagon receptor antagonist activity for the treatment of type 2 diabetes. J Endocrinol 192(2):371–380. doi:10.1677/JOE-06-0018PubMedGoogle Scholar
  50. Conrad KP, Gandley RE, Ogawa T, Nakanishi S, Danielson LA (1999) Endothelin mediates renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. Am J Physiol 276 (5 Pt 2):F767–776PubMedGoogle Scholar
  51. Constantine KL, Friedrichs MS, Detlefsen D, Nishio M, Tsunakawa M, Furumai T, Ohkuma H, Oki T, Hill S, Bruccoleri RE et al (1995) High-resolution solution structure of siamycin II: novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J Biomol NMR 5(3):271–286PubMedGoogle Scholar
  52. Corbalan N, Runti G, Adler C, Covaceuszach S, Ford RC, Lamba D, Beis K, Scocchi M, Vincent PA (2013) Functional and structural study of the dimeric inner membrane protein SbmA. J Bacteriol 195(23):5352–5361. doi:10.1128/JB.00824-13PubMedPubMedCentralGoogle Scholar
  53. Cramer P (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12(1):89–97PubMedGoogle Scholar
  54. Cunningham KE, Turner JR (2012) Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci 1258:34–42. doi:10.1111/j.1749-6632.2012.06526.xPubMedPubMedCentralGoogle Scholar
  55. Cunningham BC, Lowe DG, Li B, Bennett BD, Wells JA (1994) Production of an atrial natriuretic peptide variant that is specific for type A receptor. EMBO J 13(11):2508–2515PubMedPubMedCentralGoogle Scholar
  56. Cypess AM, Unson CG, Wu CR, Sakmar TP (1999) Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP or intracellular calcium. J Biol Chem 274(27):19455–19464PubMedGoogle Scholar
  57. de Cristóbal RE, Solbiati JO, Zenoff AM, Vincent PA, Salomón RA, Yuzenkova J, Severinov K, Farías RN (2006) Microcin J25 uptake: His5 of the MccJ25 lariat ring is involved in interaction with the inner membrane MccJ25 transporter protein SbmA. J Bacteriol 188(9):3324–3328PubMedPubMedCentralGoogle Scholar
  58. Del Papa MF, Perego M (2011) Enterococcus faecalis virulence regulator FsrA binding to target promoters. J Bacteriol 193(7):1527–1532. doi:10.1128/JB.01522-10PubMedPubMedCentralGoogle Scholar
  59. Delgado MA, Rintoul MR, Farías RN, Salomón RA (2001) Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J Bacteriol 183(15):4543–4550PubMedPubMedCentralGoogle Scholar
  60. Delporte C, Winand J, Poloczek P, Von Geldern T, Christophe J (1992) Discovery of a potent atrial natriuretic peptide antagonist for ANPA receptors in the human neuroblastoma NB-OK-1 cell line. Eur J Pharmacol 224(2–3):183–188PubMedGoogle Scholar
  61. Deschênes J, Duperé C, McNicoll N, L’Heureux N, Auger F, Fournier A, De Léan A (2005) Development of a selective peptide antagonist for the human natriuretic peptide receptor-B. Peptides 26(3):517–524. doi:10.1016/j.peptides.2004.10.017PubMedGoogle Scholar
  62. Destoumieux-Garzón D, Duquesne S, Peduzzi J, Goulard C, Desmadril M, Letellier L, Rebuffat S, Boulanger P (2005) The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem J 389(3):869–876PubMedPubMedCentralGoogle Scholar
  63. Detlefsen DJ, Hill SE, Volk KJ, Klohr SE, Tsunakawa M, Furumai T, Lin PF, Nishio M, Kawano K, Oki T et al (1995) Siamycins I and II, new anti-HIV-1 peptides: II. Sequence analysis and structure determination of siamycin I. J Antibiot 48(12):1515–1517PubMedGoogle Scholar
  64. Dhaun N, Pollock DM, Goddard J, Webb DJ (2007) Selective and mixed endothelin receptor antagonism in cardiovascular disease. Trends Pharmacol Sci 28(11):573–579PubMedGoogle Scholar
  65. Dhaun N, Webb DJ, Kluth DC (2012) Endothelin-1 and the kidney-beyond BP. Br J Pharmacol 167(4):720–731. doi:10.1111/j.1476-5381.2012.02070.xPubMedPubMedCentralGoogle Scholar
  66. Drawnel FM, Archer CR, Roderick HL (2013) The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 168(2):296–317. doi:10.1111/j.1476-5381.2012.02195.xPubMedPubMedCentralGoogle Scholar
  67. Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors and their ligands. Endocr Rev 15(2):135–162. doi:10.1210/edrv-15-2-135PubMedGoogle Scholar
  68. Drewett JG, Fendly BM, Garbers DL, Lowe DG (1995) Natriuretic peptide receptor-B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta. J Biol Chem 270(9):4668–4674PubMedGoogle Scholar
  69. Drucker DJ (2001) Minireview: the glucagon-like peptides. Endocrinology 142(2):521–527. doi:10.1210/endo.142.2.7983PubMedGoogle Scholar
  70. Ducancel F (2005) Endothelin-like peptides. Cell Mol Life Sci 62(23):2828–2839. doi:10.1007/s00018-005-5286-xPubMedGoogle Scholar
  71. Ducasse R, Li Y, Blond A, Zirah S, Lescop E, Goulard C, Guittet E, Pernodet JL, Rebuffat S (2012a) Sviceucin, a lasso peptide from Streptomyces sviceus: isolation and structure analysis. J Pep Sci 18 (Supp. 1):67–68Google Scholar
  72. Ducasse R, Yan K-P, Goulard C, Blond A, Li Y, Lescop E, Guittet E, Rebuffat S, Zirah S (2012b) Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. ChemBioChem 13(3):371–380Google Scholar
  73. Duda T (2010) Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. Mol Cell Biochem 334(1–2):37–51. doi:10.1007/s11010-009-0335-7PubMedGoogle Scholar
  74. Dupuy F, Morero R (2011) Microcin J25 membrane interaction: selectivity toward gel phase. Biochim Biophys Acta 1808(6):1764–1771. doi:10.1016/j.bbamem.2011.02.018PubMedGoogle Scholar
  75. Dupuy FG, Chirou MV, de Arcuri BF, Minahk CJ, Morero RD (2009) Proton motive force dissipation precludes interaction of microcin J25 with RNA polymerase, but enhances reactive oxygen species overproduction. Biochim Biophys Acta 1790(10):1307–1313. doi:10.1016/j.bbagen.2009.07.006PubMedGoogle Scholar
  76. Esumi Y, Suzuki Y, Itoh Y, Uramoto M, Kimura K, Goto M, Yoshihama M, Ichikawa T (2002) Propeptin, a new inhibitor of prolyl endopeptidase produced by Microbispora II. Determination of chemical structure. J Antibiot 55(3):296–300PubMedGoogle Scholar
  77. Fagan KA, McMurtry IF, Rodman DM (2001) Role of endothelin-1 in lung disease. Respir Res 2(2):90–101PubMedPubMedCentralGoogle Scholar
  78. Feighery LM, Cochrane SW, Quinn T, Baird AW, O’Toole D, Owens SE, O’Donoghue D, Mrsny RJ, Brayden DJ (2008) Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res 25(6):1377–1386. doi:10.1007/s11095-007-9527-6PubMedGoogle Scholar
  79. Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W (2000) Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9(5):956–963. doi:10.1110/ps.9.5.956PubMedPubMedCentralGoogle Scholar
  80. Ferguson AD, Kodding J, Walker G, Bos C, Coulton JW, Diederichs K, Braun V, Welte W (2001) Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Structure 9(8):707–716PubMedGoogle Scholar
  81. Flayhan A, Wien F, Paternostre M, Boulanger P, Breyton C (2012) New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA. Biochimie 94(9):1982–1989. doi:10.1016/j.biochi.2012.05.021PubMedGoogle Scholar
  82. Floss HG, Yu TW (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105(2):621–632. doi:10.1021/cr030112jPubMedGoogle Scholar
  83. Frechet D, Guitton JD, Herman F, Faucher D, Helynck G, Monegier du Sorbier B, Ridoux JP, James-Surcouf E, Vuilhorgne M (1994) Solution structure of RP 71955, a new 21 amino acid tricyclic peptide active against HIV-1 virus. Biochemistry 33 (1):42–50PubMedGoogle Scholar
  84. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB (1988) Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263(19):9395–9401PubMedGoogle Scholar
  85. Fulop V, Bocskei Z, Polgar L (1998) Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 94(2):161–170PubMedGoogle Scholar
  86. Funk OF, Kettmann V, Drimal J, Langer T (2004) Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists. J Med Chem 47(11):2750–2760. doi:10.1021/jm031041jPubMedGoogle Scholar
  87. Gandley RE, Conrad KP, McLaughlin MK (2001) Endothelin and nitric oxide mediate reduced myogenic reactivity of small renal arteries from pregnant rats. Am J Physiol Regul Integr Comp Physiol 280(1):R1–R7PubMedGoogle Scholar
  88. Garcia-Horsman JA, Mannisto PT, Venalainen JI (2007) On the role of prolyl oligopeptidase in health and disease. Neuropeptides 41(1):1–24. doi:10.1016/j.npep.2006.10.004PubMedGoogle Scholar
  89. Gardner A, Westfall TC, Macarthur H (2005) Endothelin (ET)-1-induced inhibition of ATP release from PC-12 cells is mediated by the ETB receptor: differential response to ET-1 on ATP, neuropeptide Y, and dopamine levels. J Pharmacol Exp Ther 313(3):1109–1117. doi:10.1124/jpet.104.081075PubMedGoogle Scholar
  90. Garg H, Viard M, Jacobs A, Blumenthal R (2011) Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Curr Top Med Chem 11(24):2947–2958PubMedPubMedCentralGoogle Scholar
  91. Gass J, Khosla C (2007) Prolyl endopeptidases. Cell Mol Life Sci 64(3):345–355. doi:10.1007/s00018-006-6317-yPubMedGoogle Scholar
  92. Gehring C, Irving H (2013) Plant natriuretic peptides: systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts. J Investig Med 61(5):823–826. doi:10.231/JIM.0b013e3182923395PubMedGoogle Scholar
  93. Ghosal A, Vitali A, Stach JE, Nielsen PE (2013) Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli. ACS Chem Biol 8(2):360–367. doi:10.1021/cb300434ePubMedGoogle Scholar
  94. Glazebrook J, Ichige A, Walker GC (1993) A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7(8):1485–1497PubMedGoogle Scholar
  95. Glover V, Medvedev A, Sandler M (1995) Isatin is a potent endogenous antagonist of guanylate cyclase-coupled atrial natriuretic peptide receptors. Life Sci 57(22):2073–2079PubMedGoogle Scholar
  96. Goldfine ID, Roth J, Birnbaumer L (1972) Glucagon receptors in -cells. Binding of 125 I-glucagon and activation of adenylate cyclase. J Biol Chem 247(4):1211–1218PubMedGoogle Scholar
  97. Goossens F, De Meester I, Vanhoof G, Scharpe S (1996) Distribution of prolyl oligopeptidase in human peripheral tissues and body fluids. Eur J Clin Chem Clin Biochem 34(1):17–22PubMedGoogle Scholar
  98. Gosmain Y, Masson MH, Philippe J (2013) Glucagon: the renewal of an old hormone in the pathophysiology of diabetes. J Diabetes 5(2):102–109. doi:10.1111/1753-0407.12022PubMedGoogle Scholar
  99. Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186(17):5629–5639. doi:10.1128/JB.186.17.5629-5639.2004PubMedPubMedCentralGoogle Scholar
  100. Harmar AJ (2001) Family-B G-protein-coupled receptors. Genome Biol 2(12):reviews3013.1–reviews3013.10Google Scholar
  101. He X, Chow D, Martick MM, Garcia KC (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293(5535):1657–1662. doi:10.1126/science.1062246Google Scholar
  102. He XL, Dukkipati A, Wang X, Garcia KC (2005) A new paradigm for hormone recognition and allosteric receptor activation revealed from structural studies of NPR-C. Peptides 26(6):1035–1043. doi:10.1016/j.peptides.2004.08.035PubMedGoogle Scholar
  103. He XL, Dukkipati A, Garcia KC (2006) Structural determinants of natriuretic peptide receptor specificity and degeneracy. J Mol Biol 361(4):698–714. doi:10.1016/j.jmb.2006.06.060PubMedGoogle Scholar
  104. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013) Caulosegnins I-III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135(1):210–222. doi:10.1021/ja308173bPubMedGoogle Scholar
  105. Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem Int Ed Engl 53(8):2230–2234. doi:10.1002/anie.201309267Google Scholar
  106. Helynck G, Dubertret C, Mayaux JF, Leboul J (1993) Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot 46(11):1756–1757PubMedGoogle Scholar
  107. Hirano K, Derkach DN, Hirano M, Nishimura J, Kanaide H (2003) Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol Cell Biochem 248(1–2):105–114PubMedGoogle Scholar
  108. Hoare SR (2005) Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 10(6):417–427. doi:10.1016/S1359-6446(05)03370-2PubMedGoogle Scholar
  109. Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR (2011) Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 510(2):135–146. doi:10.1016/ Scholar
  110. Hrometz SL, Thatcher KE, Ebert JA, Mills EM, Sprague JE (2011) Identification of a possible role for atrial natriuretic peptide in MDMA-induced hyperthermia. Toxicol Lett 206(2):234–237. doi:10.1016/j.toxlet.2011.07.025PubMedPubMedCentralGoogle Scholar
  111. Ichige A, Walker GC (1997) Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 179(1):209–216PubMedPubMedCentralGoogle Scholar
  112. Irwin DM (2001) Molecular evolution of proglucagon. Regul Pept 98(1–2):1–12PubMedGoogle Scholar
  113. Ishikawa T, Chijiwa T, Hagiwara M, Mamiya S, Saitoh M, Hidaka H (1988) ML-9 inhibits the vascular contraction via the inhibition of myosin light chain phosphorylation. Mol Pharmacol 33(6):598–603PubMedGoogle Scholar
  114. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128(23):7486–7491PubMedGoogle Scholar
  115. Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, Arai M, Kobayashi S, Matsumoto M, Inokoshi J, Tomoda H, Omura S (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot 60(6):357–363. doi:10.1038/ja.2007.48PubMedGoogle Scholar
  116. Janes RW, Wallace BA (1994) Modelling the structures of the isoforms of human endothelins based on the crystal structure of human endothelin-I. Biochem Soc Trans 22(4):1037–1043PubMedGoogle Scholar
  117. Janes RW, Peapus DH, Wallace BA (1994) The crystal structure of human endothelin. Nat Struct Biol 1(5):311–319PubMedGoogle Scholar
  118. Jelinek LJ, Lok S, Rosenberg GB, Smith RA, Grant FJ, Biggs S, Bensch PA, Kuijper JL, Sheppard PO, Sprecher CA et al (1993) Expression cloning and signaling properties of the rat glucagon receptor. Science 259(5101):1614–1616PubMedGoogle Scholar
  119. Ji BS, Cen J, He L, Liu M, Liu YQ, Liu L (2013) Modulation of P-glycoprotein in rat brain microvessel endothelial cells under oxygen glucose deprivation. J Pharm Pharmacol 65(10):1508–1517. doi:10.1111/jphp.12122PubMedGoogle Scholar
  120. Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D (1982) Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science 215(4536):1115–1116PubMedGoogle Scholar
  121. Kaoukis A, Deftereos S, Raisakis K, Giannopoulos G, Bouras G, Panagopoulou V, Papoutsidakis N, Cleman MW, Stefanadis C (2013) The role of endothelin system in cardiovascular disease and the potential therapeutic perspectives of its inhibition. Curr Top Med Chem 13(2):95–114PubMedGoogle Scholar
  122. Kaszuba K, Rog T, Danne R, Canning P, Fulop V, Juhasz T, Szeltner Z, Pierre JF St, Garcia-Horsman A, Mannisto PT, Karttunen M, Hokkanen J, Bunker A (2012) Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase. Biochimie 94(6):1398–1411. doi:10.1016/j.biochi.2012.03.012PubMedGoogle Scholar
  123. Katahira R, Shibata K, Yamasaki M, Matsuda Y, Yoshida M (1995) Solution structure of endothelin B receptor selective antagonist RES-701-1 determined by 1H NMR spectroscopy. Bioorg Med Chem 3(9):1273–1280PubMedGoogle Scholar
  124. Kaushik S, Etchebest C, Sowdhamini R (2014) Decoding the structural events in substrate-gating mechanism of eukaryotic prolyl oligopeptidase using normal mode analysis and molecular dynamics simulations. Proteins. doi:10.1002/prot.24511Google Scholar
  125. Kazmierski WM, Kenakin TP, Gudmundsson KS (2006) Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4. Chem Biol Drug Des 67(1):13–26. doi:10.1111/j.1747-0285.2005.00319.xPubMedGoogle Scholar
  126. Kerendi F, Halkos ME, Corvera JS, Kin H, Zhao ZQ, Mosunjac M, Guyton RA, Vinten-Johansen J (2004) Inhibition of myosin light chain kinase provides prolonged attenuation of radial artery vasospasm. Eur J Cardiothorac Surg 26(6):1149–1155. doi:10.1016/j.ejcts.2004.08.030PubMedGoogle Scholar
  127. Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177(3):694–698PubMedPubMedCentralGoogle Scholar
  128. Killmann H, Braun M, Herrmann C, Braun V (2001) FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 183(11):3476–3487. doi:10.1128/JB.183.11.3476-3487.2001PubMedPubMedCentralGoogle Scholar
  129. Killmann H, Herrmann C, Torun A, Jung G, Braun V (2002) TonB of Escherichia coli activates FhuA through interaction with the beta-barrel. Microbiology 148(11):3497–3509PubMedGoogle Scholar
  130. Kimura S, Kasuya Y, Sawamura T, Shinmi O, Sugita Y, Yanagisawa M, Goto K, Masaki T (1988) Structure-activity relationships of endothelin: importance of the C-terminal moiety. Biochem Biophys Res Commun 156(3):1182–1186PubMedGoogle Scholar
  131. Kimura K, Kanou F, Takahashi H, Esumi Y, Uramoto M, Yoshihama M (1997a) Propeptin, a new inhibitor of prolyl endopeptidase produced by Microbispora. I. Fermentation, isolation and biological properties. J Antibiot 50(5):373–378Google Scholar
  132. Kimura K, Kanou F, Yamashita Y, Yoshimoto T, Yoshihama M (1997b) Prolyl endopeptidase inhibitors derived from actinomycetes. Biosci Biotechnol Biochem 61(10):1754–1756Google Scholar
  133. Kimura K, Yamazaki M, Sasaki N, Yamashita T, Negishi S, Nakamura T, Koshino H (2007) Novel propeptin analog, propeptin-2, missing two amino acid residues from the propeptin C-terminus loses antibiotic potency. J Antibiot 60(8):519–523PubMedGoogle Scholar
  134. Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130(34):11446–11454PubMedGoogle Scholar
  135. Knappe TA, Linne U, Robbel L, Marahiel MA (2009) Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol 16(12):1290–1298. doi:S1074-5521(09)00400-1[pii]10.1016/j.chembiol.2009.11.009PubMedGoogle Scholar
  136. Knappe TA, Linne U, Xie X, Marahiel MA (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett 584(4):785–789. doi:S0014-5793(09)01092-8[pii]10.1016/j.febslet.2009.12.046PubMedGoogle Scholar
  137. Kohan DE, Rossi NF, Inscho EW, Pollock DM (2011) Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 91(1):1–77. doi:10.1152/physrev.00060.2009PubMedPubMedCentralGoogle Scholar
  138. Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86(4):1081–1088PubMedGoogle Scholar
  139. Krause A, Liepke C, Meyer M, Adermann K, Forssmann WG, Maronde E (2001) Human natriuretic peptides exhibit antimicrobial activity. Eur J Med Res 6(5):215–218PubMedGoogle Scholar
  140. Kuznedelov K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel MA, Severinov K (2011) The Antibacterial Threaded-lasso Peptide Capistruin Inhibits Bacterial RNA Polymerase. J Mol Biol 412(5):842–848. doi:S0022-2836(11)00239-7[pii]10.1016/j.jmb.2011.02.060PubMedPubMedCentralGoogle Scholar
  141. Lahav R, Heffner G, Patterson PH (1999) An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc Natl Acad Sci U S A 96(20):11496–11500PubMedPubMedCentralGoogle Scholar
  142. Lavina M, Pugsley AP, Moreno F (1986) Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J Gen Microbiol 132(6):1685–1693PubMedGoogle Scholar
  143. Lawandi J, Gerber-Lemaire S, Juillerat-Jeanneret L, Moitessier N (2010) Inhibitors of prolyl oligopeptidases for the therapy of human diseases: defining diseases and inhibitors. J Med Chem 53(9):3423–3438. doi:10.1021/jm901104.gPubMedGoogle Scholar
  144. LeVier K, Phillips RW, Grippe VK, Roop RM, 2nd, Walker GC (2000) Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287(5462):2492–2493PubMedGoogle Scholar
  145. Lin MC, Wright DE, Hruby VJ, Rodbell M (1975) Structure-function relationships in glucagon: properties of highly purified des-His-1-, monoiodo-, and (des-Asn-28, Thr-29)(homoserine lactone-27)-glucagon. BioChemistry 14(8):1559–1563PubMedGoogle Scholar
  146. Lin PF, Samanta H, Bechtold CM, Deminie CA, Patick AK, Alam M, Riccardi K, Rose RE, White RJ, Colonno RJ (1996) Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. Antimicrob Agents Chemother 40(1):133–138PubMedPubMedCentralGoogle Scholar
  147. Liu X, Xu J, Mei Q, Han L, Huang J (2013) Myosin light chain kinase inhibitor inhibits dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 58(1):107–114. doi:10.1007/s10620-012-2304-3PubMedGoogle Scholar
  148. Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95(6):771–778PubMedGoogle Scholar
  149. Lopez FE, Vincent PA, Zenoff AM, Salomon RA, Farias RN (2007) Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J Antimicrob Chemother 59(4):676–680. doi:10.1093/jac/dkm009PubMedGoogle Scholar
  150. López A, Tarragó T, Giralt E (2011) Low molecular weight inhibitors of Prolyl Oligopeptidase: a review of compounds patented from 2003 to 2010. Expert Opin Ther Pat 21(7):1023–1044. doi:10.1517/13543776.2011.577416PubMedGoogle Scholar
  151. Lukas TJ, Mirzoeva S, Slomczynska U, Watterson DM (1999) Identification of novel classes of protein kinase inhibitors using combinatorial peptide chemistry based on functional genomics knowledge. J Med Chem 42(5):910–919. doi:10.1021/jm980573aPubMedGoogle Scholar
  152. Ma P, Nishiguchi K, Yuille HM, Davis LM, Nakayama J, Phillips-Jones MK (2011) Anti-HIV siamycin I directly inhibits autophosphorylation activity of the bacterial FsrC quorum sensor and other ATP-dependent enzyme activities. FEBS Lett 585(17):2660–2664. doi:10.1016/j.febslet.2011.07.026PubMedGoogle Scholar
  153. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role of silent receptors of atrial natriuretic factor. Science 238(4827):675–678PubMedGoogle Scholar
  154. Madsen P, Knudsen LB, Wiberg FC, Carr RD (1998) Discovery and structure-activity relationship of the first non-peptide competitive human glucagon receptor antagonists. J Med Chem 41(26):5150–5157. doi:10.1021/jm9810304PubMedGoogle Scholar
  155. Maeda M, Mizuno Y, Wakita M, Yamaga T, Nonaka K, Shin MC, Shoudai K, Akaike N (2013) Potent and direct presynaptic modulation of glycinergic transmission in rat spinal neurons by atrial natriuretic peptide. Brain Res Bull 99:19–26. doi:10.1016/j.brainresbull.2013.09.003PubMedGoogle Scholar
  156. Maes M, Goossens F, Scharpe S, Meltzer HY, D’Hondt P, Cosyns P (1994) Lower serum prolyl endopeptidase enzyme activity in major depression: further evidence that peptidases play a role in the pathophysiology of depression. Biol Psychiatry 35(8):545–552PubMedGoogle Scholar
  157. Maes M, Goossens F, Scharpe S, Calabrese J, Desnyder R, Meltzer HY (1995) Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res 58(3):217–225PubMedGoogle Scholar
  158. Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1208978109Google Scholar
  159. Männistö PT, Venalainen J, Jalkanen A, Garcia-Horsman JA (2007) Prolyl oligopeptidase: a potential target for the treatment of cognitive disorders. Drug News Perspect 20(5):293–305. doi:10.1358/dnp.2007.20.5.1120216PubMedGoogle Scholar
  160. Mantle D, Falkous G, Ishiura S, Blanchard PJ, Perry EK (1996) Comparison of proline endopeptidase activity in brain tissue from normal cases and cases with Alzheimer’s disease, Lewy body dementia, Parkinson’s disease and Huntington’s disease. Clin Chim Acta 249(1–2):129–139PubMedGoogle Scholar
  161. Mariani R, Maffioli SI (2009) Bacterial RNA polymerase inhibitors: an organized overview of their structure, derivatives, biological activity and current clinical development status. Curr Med Chem 16(4):430–454PubMedGoogle Scholar
  162. Masaki T (2004) Historical review: Endothelin. Trends Pharmacol Sci 25(4):219–224. doi:10.1016/ Scholar
  163. Mathavan I, Zirah S, Mehmood S, Choudhury HG, Goulard C, Li Y, Robinson CV, Rebuffat S, Beis K (2014) Structural basis for hijacking outer membrane siderophore receptors by antimicrobial peptides: structure of the lasso peptide microcin J25 bound to FhuA. Nat Chem Biol 10(5):340–342PubMedGoogle Scholar
  164. Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66(1):151–163. doi:10.1111/j.1365-2958.2007.05903.xPubMedGoogle Scholar
  165. Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, Drucker DJ (2003) International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55(1):167–194. doi:10.1124/pr.55.1.6PubMedGoogle Scholar
  166. Mazzuca MQ, Khalil RA (2012) Vascular endothelin receptor type B: structure, function and dysregulation in vascular disease. Biochem Pharmacol 84(2):147–162. doi:10.1016/j.bcp.2012.03.020PubMedPubMedCentralGoogle Scholar
  167. McGrath MF, de Bold ML, de Bold AJ (2005) The endocrine function of the heart. Trends Endocrinol Metab 16(10):469–477. doi:10.1016/j.tem.2005.10.007PubMedGoogle Scholar
  168. Melikyan GB (2014) HIV entry: a game of hide-and-fuse? Curr Opin Virol 4C:1–7. doi:10.1016/j.coviro.2013.09.004Google Scholar
  169. Miasiro N, Karaki H, Matsuda Y, Paiva AC, Rae GA (1999) Effects of endothelin ET(B) receptor agonists and antagonists on the biphasic response in the ileum. Eur J Pharmacol 369(2):205–213PubMedGoogle Scholar
  170. Misono KS, Philo JS, Arakawa T, Ogata CM, Qiu Y, Ogawa H, Young HS (2011) Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase. FEBS J 278(11):1818–1829. doi:10.1111/j.1742-4658.2011.08083.xPubMedPubMedCentralGoogle Scholar
  171. Morishita Y, Sano T, Ando K, Saitoh Y, Kase H, Yamada K, Matsuda Y (1991) Microbial polysaccharide, HS-142-1, competitively and selectively inhibits ANP binding to its guanylyl cyclase-containing receptor. Biochem Biophys Res Commun 176(3):949–957PubMedGoogle Scholar
  172. Moss JA (2013) HIV/AIDS Review. Radiol Technol 84(3):247–267PubMedGoogle Scholar
  173. Motiwala SR, Januzzi JL Jr (2013) The role of natriuretic peptides as biomarkers for guiding the management of chronic heart failure. Clin Pharmacol Ther 93(1):57–67. doi:10.1038/clpt.2012.187PubMedGoogle Scholar
  174. Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 14(6):739–751PubMedPubMedCentralGoogle Scholar
  175. Nakajima K, Kubo S, Kumagaye S, Nishio H, Tsunemi M, Inui T, Kuroda H, Chino N, Watanabe TX, Kimura T et al (1989) Structure-activity relationship of endothelin: importance of charged groups. Biochem Biophys Res Commun 163(1):424–429PubMedGoogle Scholar
  176. Nakanishi S, Toki S, Saitoh Y, Tsukuda E, Kawahara K, Ando K, Matsuda Y (1995) Isolation of myosin light chain kinase inhibitors from microorganisms: dehydroaltenusin, altenusin, atrovenetinone, and cyclooctasulfur. Biosci Biotechnol Biochem 59(7):1333–1335PubMedGoogle Scholar
  177. Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, Mitsuhata R, Uemura Y, Tanokura M, Kumon H, Sonomoto K (2007) Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol 189(4):1358–1365. doi:10.1128/JB.00969-06PubMedPubMedCentralGoogle Scholar
  178. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (1992) Enzyme nomenclature. Academic Press, San DiegoGoogle Scholar
  179. Niklison Chirou MV, Minahk CJ, Morero RD (2004) Antimitochondrial activity displayed by the antimicrobial peptide microcin J25. Biochem Biophys Res Commun 317(3):882–886. doi:10.1016/j.bbrc.2004.03.127PubMedGoogle Scholar
  180. Niklison Chirou M, Bellomio A, Dupuy F, Arcuri B, Minahk C, Morero R (2008) Microcin J25 induces the opening of the mitochondrial transition pore and cytochrome c release through superoxide generation. FEBS J 275(16):4088–4096. doi:10.1111/j.1742-4658.2008.06550.xPubMedGoogle Scholar
  181. Niklison-Chirou MV, Dupuy F, Saavedra L, Hebert E, Banchio C, Minahk C, Morero RD (2011) Microcin J25-Ga induces apoptosis in mammalian cells by inhibiting mitochondrial RNA-polymerase. Peptides 32(4):832–834. doi:10.1016/j.peptides.2011.01.003PubMedGoogle Scholar
  182. Ogawa T, Ochiai K, Tanaka T, Tsukuda E, Chiba S, Yano K, Yamasaki M, Yoshida M, Matsuda Y (1995) RES-701-2, -3 and −4, novel and selective endothelin type B receptor antagonists produced by Streptomyces sp. I. Taxonomy of producing strains, fermentation, isolation, and biochemical properties. J Antibiot 48(11):1213–1220PubMedGoogle Scholar
  183. Ogawa H, Qiu Y, Ogata CM, Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279(27):28625–28631. doi:10.1074/jbc.M313222200PubMedGoogle Scholar
  184. Ohkita M, Tawa M, Kitada K, Matsumura Y (2012) Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci 119(4):302–313PubMedGoogle Scholar
  185. Olson NJ, Pearson RB, Needleman DS, Hurwitz MY, Kemp BE, Means AR (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc Natl Acad Sci U S A 87(6):2284–2288PubMedPubMedCentralGoogle Scholar
  186. Owens SE, Graham WV, Siccardi D, Turner JR, Mrsny RJ (2005) A strategy to identify stable membrane-permeant peptide inhibitors of myosin light chain kinase. Pharm Res 22(5):703–709. doi:10.1007/s11095-005-2584-9PubMedGoogle Scholar
  187. Pal K, Melcher K, Xu HE (2012) Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol Sin 33(3):300–311. doi:10.1038/aps.2011.170PubMedPubMedCentralGoogle Scholar
  188. Pan SJ, Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J Am Chem Soc 133(13):5016–5023. doi:10.1021/ja1109634PubMedGoogle Scholar
  189. Pan CQ, Buxton JM, Yung SL, Tom I, Yang L, Chen H, MacDougall M, Bell A, Claus TH, Clairmont KB, Whelan JP (2006) Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist. J Biol Chem 281(18):12506–12515. doi:10.1074/jbc.M600127200PubMedGoogle Scholar
  190. Pandey KN (2011) Guanylyl cyclase/ atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol 89(8):557–573. doi:10.1139/y11-054PubMedPubMedCentralGoogle Scholar
  191. Papaleo E, Russo L, Shaikh N, Cipolla L, Fantucci P, De Gioia L (2010) Molecular dynamics investigation of cyclic natriuretic peptides: dynamic properties reflect peptide activity. J Mol Graph Model 28(8):834–841. doi:10.1016/j.jmgm.2010.03.003PubMedGoogle Scholar
  192. Parthier C, Reedtz-Runge S, Rudolph R, Stubbs MT (2009) Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem Sci 34(6):303–310. doi:10.1016/j.tibs.2009.02.004PubMedGoogle Scholar
  193. Pavlova O, Mukhopadhyay J, Sineva E, Ebright RH, Severinov K (2008) Systematic structure-activity analysis of microcin J25. J Biol Chem 283(37):25589–25595PubMedPubMedCentralGoogle Scholar
  194. Phillips-Jones MK, Patching SG, Edara S, Nakayama J, Hussain R, Siligardi G (2013) Interactions of the intact FsrC membrane histidine kinase with the tricyclic peptide inhibitor siamycin I revealed through synchrotron radiation circular dichroism. Phys Chem Chem Phys 15(2):444–447. doi:10.1039/c2cp43722hPubMedGoogle Scholar
  195. Poirier H, Labrecque J, Deschenes J, DeLean A (2002) Allotopic antagonism of the non-peptide atrial natriuretic peptide (ANP) antagonist HS-142-1 on natriuretic peptide receptor NPR-A. Biochem J 362(1):231–237PubMedPubMedCentralGoogle Scholar
  196. Polgar L (2002) The prolyl oligopeptidase family. Cell Mol Life Sci 59(2):349–362PubMedGoogle Scholar
  197. Pomares MF, Delgado MA, Corbalan NS, Farias RN, Vincent PA (2010) Sensitization of microcin J25-resistant strains by a membrane-permeabilizing peptide. Appl Environ Microbiol 76(20):6837–6842. doi:10.1128/AEM.00307-10PubMedPubMedCentralGoogle Scholar
  198. Postle K, Larsen RA (2007) TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20(3–4):453–465. doi:10.1007/s10534-006-9071-6PubMedGoogle Scholar
  199. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27(1):47–72PubMedGoogle Scholar
  200. Potterat O, Stefan H, Metzger JW, Gnau V, Zähner H, Jung G (1994) Aborycin—a tricyclic 21-peptide antibiotic isolated from Streptomyces griseoflavus. Liebigs Ann Chem:741–743Google Scholar
  201. Potterat O, Wagner K, Gemmecker G, Mack J, Puder C, Vettermann R, Streicher R (2004) BI-32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J Nat Prod 67(9):1528–1531. doi:10.1021/np040093oPubMedGoogle Scholar
  202. Pugsley AP, Zimmerman W, Wehrli W (1987) Highly efficient uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol 133(12):3505–3511PubMedGoogle Scholar
  203. Qin X, Singh KV, Weinstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183(11):3372–3382. doi:10.1128/JB.183.11.3372-3382.2001PubMedPubMedCentralGoogle Scholar
  204. Quesada I, Tuduri E, Ripoll C, Nadal A (2008) Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 199(1):5–19. doi:10.1677/JOE-08-0290PubMedGoogle Scholar
  205. Remuzzi G, Perico N, Benigni A (2002) New therapeutics that antagonize endothelin: promises and frustrations. Nat Rev Drug Discov 1(12):986–1001. doi:10.1038/nrd962PubMedGoogle Scholar
  206. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ (2009) The challenge of finding a cure for HIV infection. Science 323(5919):1304–1307. doi:10.1126/science.1165706PubMedGoogle Scholar
  207. Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY (2013) Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 33(5):911–933. doi:10.1002/med.21270PubMedPubMedCentralGoogle Scholar
  208. Rintoul MR, de Arcuri BF, Morero RD (2000) Effects of the antibiotic peptide microcin J25 on liposomes: role of acyl chain length and negatively charged phospholipid. Biochim Biophys Acta 1509(1–2):65–72PubMedGoogle Scholar
  209. Rintoul MR, de Arcuri BF, Salomon RA, Farias RN, Morero RD (2001) The antibacterial action of microcin J25: evidence for disruption of cytoplasmic membrane energization in Salmonella newport. FEMS Microbiol Lett 204(2):265–270PubMedGoogle Scholar
  210. Rodbell M, Birnbaumer L, Pohl SL, Krans HM (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem 246(6):1877–1882PubMedGoogle Scholar
  211. Rodriguez-Pascual F, Busnadiego O, Lagares D, Lamas S (2011) Role of endothelin in the cardiovascular system. Pharmacol Res 63(6):463–472. doi:10.1016/j.phrs.2011.01.014PubMedGoogle Scholar
  212. Rosano L, Spinella F, Bagnato A (2013) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 13(9):637–651. doi:10.1038/nrc3546PubMedGoogle Scholar
  213. Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A, Craik DJ (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125(41):12464–12474PubMedGoogle Scholar
  214. Rosengren KJ, Blond A, Afonso C, Tabet JC, Rebuffat S, Craik DJ (2004) Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent links. Biochemistry 43(16):4696–4702PubMedGoogle Scholar
  215. Runge S, Gram C, Brauner-Osborne H, Madsen K, Knudsen LB, Wulff BS (2003a) Three distinct epitopes on the extracellular face of the glucagon receptor determine specificity for the glucagon amino terminus. J Biol Chem 278(30):28005–28010. doi:10.1074/jbc.M301085200Google Scholar
  216. Runge S, Wulff BS, Madsen K, Brauner-Osborne H, Knudsen LB (2003b) Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138(5):787–794. doi:10.1038/sj.bjp.0705120Google Scholar
  217. Runti G, Lopez RMdelC, Stoilova T, Hussain R, Jennions M, Choudhury HG, Benincasa M, Gennaro R, Beis K, Scocchi M (2013) Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35). J Bacteriol 195(23):5343–5351. doi:10.1128/JB.00818-13PubMedPubMedCentralGoogle Scholar
  218. Saitoh M, Ishikawa T, Matsushima S, Naka M, Hidaka H (1987) Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 262(16):7796–7801PubMedGoogle Scholar
  219. Salomón RA, Farías RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174(22):7428–7435PubMedPubMedCentralGoogle Scholar
  220. Salomón RA, Farías RN (1993) The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175(23):7741–7742PubMedPubMedCentralGoogle Scholar
  221. Salomón RA, Farías RN (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177(11):3323–3325PubMedPubMedCentralGoogle Scholar
  222. Sasaki Y (1990) Inhibition of myosin light chain phosphorylation in cultured smooth muscle cells by HA1077, a new type of vasodilator. Biochem Biophys Res Commun 171(3):1182–1187PubMedGoogle Scholar
  223. Sasaki K, Dockerill S, Adamiak DA, Tickle IJ, Blundell T (1975) X-ray analysis of glucagon and its relationship to receptor binding. Nature 257(5529):751–757PubMedGoogle Scholar
  224. Schiffrin EL (2001) Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens 14(6 Pt 2):83S–89SPubMedGoogle Scholar
  225. Schoenfeld JR, Sehl P, Quan C, Burnier JP, Lowe DG (1995) Agonist selectivity for three species of natriuretic peptide receptor-A. Mol Pharmacol 47(1):172–180PubMedGoogle Scholar
  226. Schulz I, Gerhartz B, Neubauer A, Holloschi A, Heiser U, Hafner M, Demuth HU (2002) Modulation of inositol 1,4,5-triphosphate concentration by prolyl endopeptidase inhibition. Eur J Biochem 269(23):5813–5820PubMedGoogle Scholar
  227. Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137(6):1912–1933. doi:10.1053/j.gastro.2009.09.008PubMedGoogle Scholar
  228. Semenova E, Yuzenkova Y, Peduzzi J, Rebuffat S, Severinov K (2005) Structure-activity analysis of microcinJ25: distinct parts of the threaded lasso molecule are responsible for interaction with bacterial RNA polymerase. J Bacteriol 187(11):3859–3863PubMedPubMedCentralGoogle Scholar
  229. Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 87(2):272–280. doi:10.1093/cvr/cvq144PubMedPubMedCentralGoogle Scholar
  230. Shen DM, Lin S, Parmee ER (2011) A survey of small molecule glucagon receptor antagonists from recent patents (2006–2010). Expert Opin Ther Pat 21(8):1211–1240. doi:10.1517/13543776.2011.587001PubMedGoogle Scholar
  231. Shibata K, Suzawa T, Ohno T, Yamada K, Tanaka T, Tsukuda E, Matsuda Y, Yamasaki M (1998) Hybrid peptides constructed from RES-701-1, an endothelin B receptor antagonist, and endothelin; binding selectivity for endothelin receptors and their pharmacological activity. Bioorg Med Chem 6(12):2459–2467PubMedGoogle Scholar
  232. Shibata K, Suzawa T, Soga S, Mizukami T, Yamada K, Hanai N, Yamasaki M (2003) Improvement of biological activity and proteolytic stability of peptides by coupling with a cyclic peptide. Bioorg Med Chem Lett 13(15):2583–2586PubMedGoogle Scholar
  233. Silver MA (2006) The natriuretic peptide system: kidney and cardiovascular effects. Curr Opin Nephrol Hypertens 15(1):14–21Google Scholar
  234. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459):444–449. doi:10.1038/nature12393PubMedGoogle Scholar
  235. Soudy R, Wang L, Kaur K (2012) Synthetic peptides derived from the sequence of a lasso peptide microcin J25 show antibacterial activity. Bioorg Med Chem 20(5):1794–1800. doi:10.1016/j.bmc.2011.12.061PubMedGoogle Scholar
  236. Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, Chakraborty A, Druzhinin SY, Chatterjee S, Mukhopadhyay J, Ebright YW, Zozula A, Shen J, Sengupta S, Niedfeldt RR, Xin C, Kaneko T, Irschik H, Jansen R, Donadio S, Connell N, Ebright RH (2011) New target for inhibition of bacterial RNA polymerase: ‘switch region’. Curr Opin Microbiol 14(5):532–543. doi:10.1016/j.mib.2011.07.030PubMedPubMedCentralGoogle Scholar
  237. Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, Wirth R, Clewell DB (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59(1):415–420PubMedPubMedCentralGoogle Scholar
  238. Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K et al (1992) Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 130(1):229–239. doi:10.1210/endo.130.1.1309330PubMedGoogle Scholar
  239. Svetlov V, Nudler E (2009) Macromolecular micromovements: how RNA polymerase translocates. Curr Opin Struct Biol 19(6):701–707. doi:10.1016/ Scholar
  240. Szeltner Z, Polgar L (2008) Structure, function and biological relevance of prolyl oligopeptidase. Curr Protein Pept Sci 9(1):96–107PubMedGoogle Scholar
  241. Takashima S (2009) Phosphorylation of myosin regulatory light chain by myosin light chain kinase, and muscle contraction. Circ J 73(2):208–213PubMedGoogle Scholar
  242. Takashima H, Mimura N, Ohkubo T, Yoshida T, Tamaoki H, Kobayashi Y (2004a) Distributed computing and NMR constraint-based high-resolution structure determination: applied for bioactive Peptide endothelin-1 to determine C-terminal folding. J Am Chem Soc 126(14):4504–4505. doi:10.1021/ja031637wGoogle Scholar
  243. Takashima H, Tamaoki H, Teno N, Nishi Y, Uchiyama S, Fukui K, Kobayashi Y (2004b) Hydrophobic core around tyrosine for human endothelin-1 investigated by photochemically induced dynamic nuclear polarization nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biochemistry 43(44):13932–13936. doi:10.1021/bi048649uGoogle Scholar
  244. Takei Y (2000) Structural and functional evolution of the natriuretic peptide system in vertebrates. Int Rev Cytol 194:1–66PubMedGoogle Scholar
  245. Tamaoki H, Kobayashi Y, Nishimura S, Ohkubo T, Kyogoku Y, Nakajima K, Kumagaye S, Kimura T, Sakakibara S (1991) Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. Protein Eng 4(5):509–518PubMedGoogle Scholar
  246. Tanaka T, Tsukuda E, Nozawa M, Nonaka H, Ohno T, Kase H, Yamada K, Matsuda Y (1994) RES-701-1, a novel, potent, endothelin type B receptor-selective antagonist of microbial origin. Mol Pharmacol 45(4):724–730PubMedGoogle Scholar
  247. Tanaka T, Ogawa T, Matsuda Y (1995) Species difference in the binding characteristics of RES-701-1: potent endothelin ETB receptor-selective antagonist. Biochem Biophys Res Commun 209(2):712–716. doi:10.1006/bbrc.1995.1557PubMedGoogle Scholar
  248. Trachte GJ (1993) Atrial natriuretic factor alters neurotransmission independently of guanylate cyclase-coupled receptors in the rabbit vas deferens. J Pharmacol Exp Ther 264(3):1227–1233PubMedGoogle Scholar
  249. Trachte G (2005) Neuronal regulation and function of natriuretic peptide receptor C. Peptides 26(6):1060–1067. doi:10.1016/j.peptides.2004.08.029PubMedGoogle Scholar
  250. Tsunakawa M, Hu SL, Hoshino Y, Detlefson DJ, Hill SE, Furumai T, White RJ, Nishio M, Kawano K, Yamamoto S et al (1995) Siamycins I and II, new anti-HIV peptides: I. Fermentation, isolation, biological activity and initial characterization. J Antibiot 48(5):433–434PubMedGoogle Scholar
  251. Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273:C1378–C1385PubMedGoogle Scholar
  252. Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, Park S, Shin J, Oh DC (2013) Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod 76(5):873–879. doi:10.1021/np300902gGoogle Scholar
  253. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320(3):217–234PubMedGoogle Scholar
  254. Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 122(1):4–12. doi:10.1172/JCI60016PubMedPubMedCentralGoogle Scholar
  255. Unger RH, Orci L (1975) The essential role of glucagon in the pathogenesis of diabetes mellitus. The Lancet 1(7897):14–16Google Scholar
  256. Unson CG, Macdonald D, Ray K, Durrah TL, Merrifield RB (1991) Position 9 replacement analogs of glucagon uncouple biological activity and receptor binding. J Biol Chem 266(5):2763–2766PubMedGoogle Scholar
  257. Unson CG, Macdonald D, Merrifield RB (1993) The role of histidine-1 in glucagon action. Arch Biochem Biophys 300(2):747–750. doi:10.1006/abbi.1993.1103PubMedGoogle Scholar
  258. Unson CG, Merrifield RB (1994a) Identification of an essential serine residue in glucagon: implication for an active site triad. Proc Natl Acad Sci U S A 91(2):454–458Google Scholar
  259. Unson CG, Wu CR, Fitzpatrick KJ, Merrifield RB (1994b) Multiple-site replacement analogs of glucagon. A molecular basis for antagonist design. J Biol Chem 269(17):12548–12551Google Scholar
  260. Unson CG, Wu CR, Merrifield RB (1994c) Roles of aspartic acid 15 and 21 in glucagon action: receptor anchor and surrogates for aspartic acid 9. Biochemistry 33(22):6884–6887Google Scholar
  261. Unson CG, Wu CR, Jiang Y, Yoo B, Cheung C, Sakmar TP, Merrifield RB (2002) Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Biochemistry 41(39):11795–11803PubMedGoogle Scholar
  262. Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S (2002) Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417(6890):712–719. doi:10.1038/nature752PubMedGoogle Scholar
  263. Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448(7150):163–168. doi:10.1038/nature05931PubMedGoogle Scholar
  264. Venalainen JI, Juvonen RO, Mannisto PT (2004) Evolutionary relationships of the prolyl oligopeptidase family enzymes. Eur J Biochem 271(13):2705–2715. doi:10.1111/j.1432-1033.2004.04199.xPubMedGoogle Scholar
  265. Vesely DL, Giordano AT (1991) Atrial natriuretic peptide hormonal system in plants. Biochem Biophys Res Commun 179(1):695–700PubMedGoogle Scholar
  266. Vilotti S, Marchenkova A, Ntamati N, Nistri A (2013) B-Type Natriuretic Peptide-Induced Delayed Modulation of TRPV1 and P2X3 Receptors of Mouse Trigeminal Sensory Neurons. PloS one 8(11):e81138. doi:10.1371/journal.pone.0081138PubMedPubMedCentralGoogle Scholar
  267. Vincent PA, Delgado MA, Farias RN, Salomon RA (2004) Inhibition of Salmonella enterica serovars by microcin J25. FEMS Microbiol Lett 236(1):103–107. doi:10.1016/j.femsle.2004.05.027PubMedGoogle Scholar
  268. Vincent PA, Bellomio A, de Arcuri BF, Farías RN, Morero RD (2005) MccJ25 C-terminal is involved in RNA-polymerase inhibition but not in respiration inhibition. Biochem Biophys Res Commun 331(2):549–551PubMedGoogle Scholar
  269. Vincent PA, Morero RD (2009) The structure and biological aspects of peptide antibiotic microcin J25. Curr Med Chem 16(5):538–549PubMedGoogle Scholar
  270. von Geldern TW, Budzik GP, Dillon TP, Holleman WH, Holst MA, Kiso Y, Novosad EI, Opgenorth TJ, Rockway TW, Thomas AM, et al. (1990) Atrial natriuretic peptide antagonists: biological evaluation and structural correlations. Mol Pharmacol 38(6):771–778Google Scholar
  271. Wakelam MJ, Murphy GJ, Hruby VJ, Houslay MD (1986) Activation of two signal-transduction systems in hepatocytes by glucagon. Nature 323(6083):68–71. doi:10.1038/323068a0PubMedGoogle Scholar
  272. Wallace BA, Janes RW, Bassolino DA, Krystek SR Jr (1995) A comparison of X-ray and NMR structures for human endothelin-1. Protein Sci 4(1):75–83. doi:10.1002/pro.5560040110PubMedPubMedCentralGoogle Scholar
  273. Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK (1991) Anantin-a peptide antagonist of the atrial natriuretic factor (ANF). I. Producing organism, fermentation, isolation and biological activity. J Antibiot 44(2):164–171PubMedGoogle Scholar
  274. Wilen CB, Tilton JC, Doms RW (2012a) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2(8). doi:10.1101/cshperspect.a006866Google Scholar
  275. Wilen CB, Tilton JC, Doms RW (2012b) Molecular mechanisms of HIV entry. Adv Exp Med Biol 726:223–242. doi:10.1007/978-1-4614-0980-9_10Google Scholar
  276. Wilk S, Orlowski M (1983) Inhibition of rabbit brain prolyl endopeptidase by n-benzyloxycarbonyl-prolyl-prolinal, a transition state aldehyde inhibitor. J Neurochem 41(1):69–75PubMedGoogle Scholar
  277. Williams RS (2005) Pharmacogenetics in model systems: defining a common mechanism of action for mood stabilisers. Prog Neuropsychopharmacol Biol Psychiatry 29(6):1029–1037. doi:10.1016/j.pnpbp.2005.03.020PubMedPubMedCentralGoogle Scholar
  278. Williams DL Jr, Jones KL, Pettibone DJ, Lis EV, Clineschmidt BV (1991) Sarafotoxin S6c: an agonist which distinguishes between endothelin receptor subtypes. Biochem Biophys Res Commun 175(2):556–561PubMedGoogle Scholar
  279. Williams RS, Eames M, Ryves WJ, Viggars J, Harwood AJ (1999) Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J 18(10):2734–2745. doi:10.1093/emboj/18.10.2734PubMedPubMedCentralGoogle Scholar
  280. Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125(41):12475–12483PubMedGoogle Scholar
  281. Xing J, Moldobaeva N, Birukova AA (1985) Atrial natriuretic peptide protects against Staphylococcus aureus-induced lung injury and endothelial barrier dysfunction. J Appl Physiol 110(1):213–224Google Scholar
  282. Yamaguchi T, Murata Y, Fujiyoshi Y, Doi T (2003) Regulated interaction of endothelin B receptor with caveolin-1. Eur J Biochem 270(8):1816–1827PubMedGoogle Scholar
  283. Yanagisawa M, Masaki T (1989) Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci 10(9):374–378PubMedGoogle Scholar
  284. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415. doi:10.1038/332411a0PubMedGoogle Scholar
  285. Yano K, Toki S, Nakanishi S, Ochiai K, Ando K, Yoshida M, Matsuda Y, Yamasaki M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.-I. Isolation, structural determination and biological properties of MS-271. Bioorg Med Chem 4(1):115–120PubMedGoogle Scholar
  286. Yorgey P, Lee J, Kordel J, Vivas E, Warner P, Jebaratnam D, Kolter R (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci U S A 91(10):4519–4523PubMedPubMedCentralGoogle Scholar
  287. Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farias RN, Salomon R, Severinov K (2002) Mutations of bacterial RNA polymerase leading to resistance to microcin J25. J Biol Chem 277(52):50867–50875. doi:10.1074/jbc.M209425200PubMedGoogle Scholar
  288. Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98(6):811–824PubMedGoogle Scholar

Copyright information

© Yanyan Li, Séverine Zirah and Sylvie Rebuffat 2015

Authors and Affiliations

  1. 1.Laboratory of Communication Molecules and Adaptation of MicroorganismsMuséum National d’Histoire Naturelle CNRSParisFrance

Personalised recommendations