From the Producer Microorganisms to the Lasso Scaffold

Chapter
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)

Abstract

Lasso peptides are members of the ribosomally synthesized and post-translationally modified peptides produced by bacteria. Currently known lasso peptides are produced in the phyla of Proteobacteria or Actinobacteria. They attract considerable attention because of their original interlocked structure endowed with high stability and important biological activities ranging from antimicrobials to enzyme inhibitors or receptor antagonists. The structure of lasso peptides consists of a peptidic tail trapped and locked into a macrolactam ring, forming a loop standing above and a threaded tail below the ring. This chapter describes the currently known lasso peptides concerning their origin, production and purification, structure and factors that contribute to maintain the lasso topology.

Keywords

Heterologous expression 3D structure NMR Mass spectrometry Mutagenesis Lasso topology Interlocked topology Stability 

References

  1. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and posttranslationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. doi:10.1039/c2np20085fPubMedCrossRefPubMedCentralGoogle Scholar
  2. Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125(41):12382–12383PubMedCrossRefGoogle Scholar
  3. Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthelemy M, Prigent Y, Salomón RA, Farías RN, Moreno F, Rebuffat S (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 259(3):747–755PubMedCrossRefGoogle Scholar
  4. Blond A, Cheminant M, Segalas-Milazzo I, Peduzzi J, Barthelemy M, Goulard C, Salomon R, Moreno F, Farias R, Rebuffat S (2001) Solution structure of microcin J25, the single macrocyclic antimicrobial peptide from Escherichia coli. Eur J Biochem 268(7):2124–2133PubMedCrossRefGoogle Scholar
  5. Blond A, Cheminant M, Destoumieux-Garzón D, Segalas-Milazzo I, Peduzzi J, Goulard C, Rebuffat S (2002) Thermolysin-linearized microcin J25 retains the structured core of the native macrocyclic peptide and displays antimicrobial activity. Eur J Biochem 269(24):6212–6222PubMedCrossRefGoogle Scholar
  6. Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48(Pt 1):317–320PubMedCrossRefGoogle Scholar
  7. Chiuchiolo MJ, Delgado MA, Farias RN, Salomon RA (2001) Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol 183(5):1755–1764. doi:10.1128/JB.183.5.1755-1764.2001PubMedCrossRefPubMedCentralGoogle Scholar
  8. Constantine KL, Friedrichs MS, Detlefsen D, Nishio M, Tsunakawa M, Furumai T, Ohkuma H, Oki T, Hill S, Bruccoleri RE et al (1995) High-resolution solution structure of siamycin II: novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J Biomol NMR 5(3):271–286PubMedCrossRefGoogle Scholar
  9. Craik DJ, Daly NL (2007) NMR as a tool for elucidating the structures of circular and knotted proteins. Mol Biosyst 3(4):257–265. doi:10.1039/b616856fPubMedCrossRefGoogle Scholar
  10. Craik DJ, Malik U (2013) Cyclotide biosynthesis. Curr Opin Chem Biol 17(4):546–554. doi:10.1016/j.cbpa.2013.05.033PubMedCrossRefGoogle Scholar
  11. Dasgupta S, Huang KW, Wu J (2012) Trifluoromethyl acting as stopper in [2]rotaxane. Chem Commun (Camb) 48(40):4821–4823. doi:10.1039/c2cc31009kCrossRefGoogle Scholar
  12. Diep DB, Havarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18(4):631–639PubMedCrossRefGoogle Scholar
  13. Diep DB, Havarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178(15):4472–4483PubMedPubMedCentralGoogle Scholar
  14. Doidge EM (1915) A bacterial disease of the mango. Bacillus mangiferae n. sp. Ann Appl Biol 2:1–45CrossRefGoogle Scholar
  15. Ducasse R, Li Y, Blond A, Zirah S, Lescop E, Goulard C, Guittet E, Pernodet JL, Rebuffat S (2012a) Sviceucin, a lasso peptide from Streptomyces sviceus: isolation and structure analysis. J Pep Sci 18(Supp 1):67–68Google Scholar
  16. Ducasse R, Yan K-P, Goulard C, Blond A, Li Y, Lescop E, Guittet E, Rebuffat S, Zirah S (2012b) Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. ChemBioChem 13(3):371–380Google Scholar
  17. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24(4):708–734. doi:10.1039/b516237hPubMedCrossRefGoogle Scholar
  18. Eaton TE, Ford LM, Godfrey OW, Huber MLB, Zmijewski MJ (1989) Process for producing the A-21978C antibiotics. Vol US 4800157A. Google PatentsGoogle Scholar
  19. Esumi Y, Suzuki Y, Itoh Y, Uramoto M, Kimura K, Goto M, Yoshihama M, Ichikawa T (2002) Propeptin, a new inhibitor of prolyl endopeptidase produced by microbispora II. Determination of chemical structure. J Antibiot 55(3):296–300PubMedCrossRefGoogle Scholar
  20. Frechet D, Guitton JD, Herman F, Faucher D, Helynck G, Monegier du Sorbier B, Ridoux JP, James-Surcouf E, Vuilhorgne M (1994) Solution structure of RP 71955, a new 21 amino acid tricyclic peptide active against HIV-1 virus. Biochemistry 33(1):42–50PubMedCrossRefGoogle Scholar
  21. Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73(9):2832–2838. doi:10.1128/AEM.02704-06PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hanka LJ, Dietz A (1973) U-42, 126, a new antimetabolite antibiotic: production, biological activity, and taxonomy of the producing microorganism. Antimicrob Agents Chemother 3(3):425–431PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013a) Caulosegnins I-III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135(1):210–222. doi:10.1021/ja308173bGoogle Scholar
  24. Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013b) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers. doi:10.1002/bip.22326Google Scholar
  25. Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem Int Ed Engl. doi:10.1002/anie.201309267Google Scholar
  26. Helynck G, Dubertret C, Mayaux JF, Leboul J (1993) Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot 46(11):1756–1757PubMedCrossRefGoogle Scholar
  27. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25. doi:10.1038/nrmicro2259PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hoshino Y, Satoh T (1985) Dependence on calcium ions of gelatin hydrolysis by Rhodopseudomonas capsulata but not Rhodopseudomonas gelatinosa. Agric Biol Chem 49(11):3331–3332CrossRefGoogle Scholar
  29. Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95(2):451–460. doi:10.1007/s00253-012-3973-8PubMedCrossRefGoogle Scholar
  30. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128(23):7486–7491PubMedCrossRefGoogle Scholar
  31. Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, Arai M, Kobayashi S, Matsumoto M, Inokoshi J, Tomoda H, Omura S (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot 60(6):357–363. doi:10.1038/ja.2007.48PubMedCrossRefGoogle Scholar
  32. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27(6):755–762. doi:10.1078/0723202042369884PubMedCrossRefGoogle Scholar
  33. Katahira R, Shibata K, Yamasaki M, Matsuda Y, Yoshida M (1995) Solution structure of endothelin B receptor selective antagonist RES-701-1 determined by 1H NMR spectroscopy. Bioorg Med Chem 3(9):1273–1280PubMedCrossRefGoogle Scholar
  34. Katahira R, Yamasaki M, Matsuda Y, Yoshida M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.–II. Solution structure of MS-271: characteristic features of the “lasso” structure. Bioorg Med Chem 4(1):121–129PubMedCrossRefGoogle Scholar
  35. Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802. doi:10.1038/nchembio.684PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kimura K, Kanou F, Takahashi H, Esumi Y, Uramoto M, Yoshihama M (1997) Propeptin, a new inhibitor of prolyl endopeptidase produced by Microbispora. I. Fermentation, isolation and biological properties. J Antibiot 50(5):373–378PubMedCrossRefGoogle Scholar
  37. Kimura K, Yamazaki M, Sasaki N, Yamashita T, Negishi S, Nakamura T, Koshino H (2007) Novel propeptin analog, propeptin-2, missing two amino acid residues from the propeptin C-terminus loses antibiotic potency. J Antibiot 60(8):519–523PubMedCrossRefGoogle Scholar
  38. Knappe TA, Linne U, Robbel L, Marahiel MA (2009) Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol 16(12):1290–1298. doi:10.1016/j.chembiol.2009.11.009PubMedCrossRefGoogle Scholar
  39. Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130(34):11446–11454PubMedCrossRefGoogle Scholar
  40. Knappe TA, Linne U, Xie X, Marahiel MA (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett 584(4):785–789. doi:10.1016/j.febslet.2009.12.046PubMedCrossRefGoogle Scholar
  41. Knappe TA, Manzenrieder F, Mas-Moruno C, Linne U, Sasse F, Kessler H, Xie X, Marahiel MA (2011) Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew Chem Int Ed Engl 50(37):8714–8717. doi:10.1002/anie.201102190PubMedCrossRefGoogle Scholar
  42. Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270(45):27299–27304PubMedCrossRefGoogle Scholar
  43. Lee CS, Kim KK, Aslam Z, Lee ST (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57(8):1175–1179Google Scholar
  44. Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41(2):333–344. doi:10.1007/s10295-013-1357-4PubMedCrossRefGoogle Scholar
  45. Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1208978109Google Scholar
  46. Morishita Y, Chiba S, Tsukuda E, Tanaka T, Ogawa T, Yamasaki M, Yoshida M, Kawamoto I, Matsuda Y (1994) RES-701-1, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. I. Characterization of producing strain, fermentation, isolation, physico-chemical and biological properties. J Antibiot 47(3):269–275PubMedCrossRefGoogle Scholar
  47. Nar H, Schmid A, Puder C, Potterat O (2010) High-resolution crystal structure of a lasso peptide. ChemMedChem 5(10):1689–1692. doi:10.1002/cmdc.201000264PubMedCrossRefGoogle Scholar
  48. Ogawa T, Ochiai K, Tanaka T, Tsukuda E, Chiba S, Yano K, Yamasaki M, Yoshida M, Matsuda Y (1995) RES-701-2, -3 and -4, novel and selective endothelin type B receptor antagonists produced by Streptomyces sp. I. Taxonomy of producing strains, fermentation, isolation, and biochemical properties. J Antibiot 48(11):1213–1220PubMedCrossRefGoogle Scholar
  49. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagaran SR, Shivaji S, Cullum J, Holliger C, Lal R (2005) Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55(Pt 5):1965–1972. doi:10.1099/ijs.0.63201-0PubMedCrossRefGoogle Scholar
  50. Pan SJ, Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J Am Chem Soc 133(13):5016–5023. doi:10.1021/ja1109634PubMedCrossRefGoogle Scholar
  51. Pan SJ, Cheung WL, Link AJ (2010) Engineered gene clusters for the production of the antimicrobial peptide microcin J25. Protein Expr Purif 71(2):200–206. doi:10.1016/j.pep.2009.12.010PubMedCrossRefGoogle Scholar
  52. Pan SJ, Rajniak J, Maksimov MO, Link AJ (2011) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Commun (in press)Google Scholar
  53. Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, Hertweck C (2007b) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 57(Pt 11):2583–2590. doi:10.1099/ijs.0.64660-0Google Scholar
  54. Pérot-Taillandier M, Zirah S, Rebuffat S, Linne U, Marahiel MA, Cole RB, Tabet JC, Afonso C (2012) Determination of peptide topology through time-resolved double-resonance under electron capture dissociation conditions. Anal Chem 84(11):4957–4964. doi:10.1021/ac300607yPubMedCrossRefGoogle Scholar
  55. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295PubMedPubMedCentralGoogle Scholar
  56. Potterat O, Stefan H, Metzger JW, Gnau V, Zähner H, Jung G (1994) Aborycin—a tricyclic 21-peptide antibiotic isolated from Streptomyces griseoflavus. Liebigs Ann Chem 1994(7):741–743CrossRefGoogle Scholar
  57. Potterat O, Wagner K, Gemmecker G, Mack J, Puder C, Vettermann R, Streicher R (2004) BI-32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J Nat Prod 67(9):1528–1531. doi:10.1021/np040093oPubMedCrossRefGoogle Scholar
  58. Rebuffat S, Blond A, Destoumieux-Garzón D, Goulard C, Peduzzi J (2004) Microcin J25, from the macrocyclic to the lasso structure: implications for biosynthetic, evolutionary and biotechnological perspectives. Curr Protein Pept Sci 5(5):383–391PubMedCrossRefGoogle Scholar
  59. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137. doi:10.1146/annurev.micro.56.012302.161024PubMedCrossRefGoogle Scholar
  60. Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A, Craik DJ (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125(41):12464–12474PubMedCrossRefGoogle Scholar
  61. Rosengren KJ, Blond A, Afonso C, Tabet JC, Rebuffat S, Craik DJ (2004) Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent links. Biochemistry 43(16):4696–4702PubMedCrossRefGoogle Scholar
  62. Salomón RA, Farías RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174(22):7428–7435PubMedPubMedCentralGoogle Scholar
  63. Scannell AG, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000) Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate. J Appl Microbiol 89(4):573–579. doi:jam1149PubMedCrossRefGoogle Scholar
  64. Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight posttranslationally modified microcins. Mol Microbiol 65(6):1380–1394PubMedCrossRefGoogle Scholar
  65. Solbiati JO, Ciaccio M, Farias RN, Salomon RA (1996) Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 178(12):3661–3663PubMedPubMedCentralGoogle Scholar
  66. Solbiati JO, Ciaccio M, Farías RN, González-Pastor JE, Moreno F, Salomón RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181(8):2659–2662PubMedPubMedCentralGoogle Scholar
  67. Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, Park S, Shin J, Oh DC (2013) Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod 76(5):873–879. doi:10.1021/np300902gPubMedCrossRefGoogle Scholar
  68. Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51(Pt 1):73–79PubMedGoogle Scholar
  69. Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK (1991) Anantin–a peptide antagonist of the atrial natriuretic factor (ANF). I. Producing organism, fermentation, isolation and biological activity. J Antibiot 44(2):164–171PubMedCrossRefGoogle Scholar
  70. Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125(41):12475–12483PubMedCrossRefGoogle Scholar
  71. Wyss DF, Lahm HW, Manneberg M, Labhardt AM (1991) Anantin—a peptide antagonist of the atrial natriuretic factor (ANF). II. Determination of the primary sequence by NMR on the basis of proton assignments. J Antibiot 44(2):172–180PubMedCrossRefGoogle Scholar
  72. Xie X, Marahiel MA (2012) NMR as an effective tool for the structure determination of lasso peptides. Chembiochem 13(5):621–625. doi:10.1002/cbic.201100754PubMedCrossRefGoogle Scholar
  73. Yamasaki M, Yano K, Yoshida M, Matsuda Y, Yamaguchi K (1994) RES-701-1, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. II. Determination of the primary sequence. J Antibiot 47(3):276–280PubMedCrossRefGoogle Scholar
  74. Yano K, Yamasaki M, Yoshida M, Matsuda Y, Yamaguchi K (1995) RES-701-2, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. II. Determination of the primary structure. J Antibiot 48(11):1368–1370PubMedCrossRefGoogle Scholar
  75. Yano K, Toki S, Nakanishi S, Ochiai K, Ando K, Yoshida M, Matsuda Y, Yamasaki M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.-I. Isolation, structural determination and biological properties of MS-271. Bioorg Med Chem 4(1):115–120PubMedCrossRefGoogle Scholar
  76. Zhang K, Han W, Zhang R, Xu X, Pan Q, Hu X (2007) Phenylobacterium zucineum sp. nov., a facultative intracellular bacterium isolated from a human erythroleukemia cell line K562. Syst Appl Microbiol 30(3):207–212. doi:10.1016/j.syapm.2006.07.002PubMedCrossRefGoogle Scholar
  77. Zimmermann M, Hegemann JD, Xie X, Marahiel MA (2013) The astexin-1 lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20(4):558–569. doi:10.1016/j.chembiol.2013.03.013PubMedCrossRefGoogle Scholar
  78. Zirah S, Afonso C, Linne U, Knappe TA, Marahiel MA, Rebuffat S, Tabet JC (2011) Topoisomer differentiation of molecular knots by FTICR MS: lessons from class II lasso peptides J Am Soc Mass Spectrom 22(3):467–479PubMedCrossRefGoogle Scholar

Copyright information

© Yanyan Li, Séverine Zirah and Sylvie Rebuffat 2015

Authors and Affiliations

  1. 1.Laboratory of Communication Molecules and Adaptation of MicroorganismsMuséum National d’Histoire Naturelle CNRSParisFrance

Personalised recommendations