Addressing the Peak Power Problem Through Thermal Energy Storage

  • Wesley Cole
  • JongSuk Kim
  • Kriti Kapoor
  • Thomas Edgar
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 212)

Abstract

In the United States, the electrical power grid is divided into three primary regions: the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. Each of these regions struggles with peak power issues, but this case study will focus on the Texas Interconnection, which is operated by the Electricity Reliability Council of Texas (ERCOT).This chapter discusses the opportunity to shift one of the largest electricity loads (air-conditioning) from the expensive aftrenoon peak to the cheaper nighttime hours using Thermal Energy Storage (TES), which is used for storing “cooling” in the form of chilled wate, and outlines a model for finding an optimal design for it.

Keywords

Expense Boiling Payback 

Supplementary material

273578_1_En_14_MOESM1_ESM.pdf (383 kb)
(pdf 383 kb)
273578_1_En_14_MOESM2_ESM.xlsx (773 kb)
(xlsx 773 kb)

References

  1. 1.
    Dorgan, C. E., & Elleson, J. S. (1993) Design guide for cool thermal storage. Atlanta: ASHRAE.Google Scholar
  2. 2.
    Hasnain, S. M. (1998) Review on sustainable thermal energy storage technologies, part II: Cool thermal storage. Energy Conversion and Management, 39(11), 1139–1153.CrossRefGoogle Scholar
  3. 3.
    Hasnain, S. M., Alawaji, S. H., Al-Ibrahim, A. M., & Smiai, M. S. (2000) Prospects of cool thermal storage utilization in Saudi Arabia. Energy Conversion and Management, 41(17), 1829–1839.CrossRefGoogle Scholar
  4. 4.
    Roth, K., Zogg, R., & Brodrick, J. (2006). Cool thermal energy storage. ASHRAE Journal, 48, 94–96.Google Scholar
  5. 5.
    Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar energy storage methods. Industrial & Engineering Chemistry Research, 50(15), 8954–8964.CrossRefGoogle Scholar
  6. 6.
    Cole, W. J., Powell, K. M., & Edgar, T. F. (2012) Optimization and advanced control of thermal energy storage systems. Reviews in Chemical Engineering, 28(2–3), 81–99.Google Scholar
  7. 7.
    Dinçer, İ., & Rosen, M. (2011). Thermal energy storage: Systems and applications (2nd ed.). Hoboken: Wiley.Google Scholar
  8. 8.
    Powell, K. M., & Edgar, T. F. (2013). An adaptive-grid model for dynamic simulation of thermocline thermal energy storage systems. Energy Conversion and Management, 76, 865–873.CrossRefGoogle Scholar
  9. 9.
    Cole, W. J., Edgar, T. F., & Novoselac, A. (2012) Use of model predictive control to enhance the flexibility of thermal energy storage cooling systems. In Proceedings of the 2012 American Control Conference, Montreal, Canada, pp. 2788–2793.Google Scholar
  10. 10.
    DOE (2013) Building technologies office: EnergyPlus energy simulation software, 2013 (Online). http://apps1.eere.energy.gov/buildings/energyplus/. Accessed 13 Sept 2013.
  11. 11.
    Hydeman, M., Webb, N., Sreedharan, P., & Blanc, S. (2002) Development and testing of a reformulated regression-based electric chiller model. ASHRAE Transactions, 108(2), 1118–1127.Google Scholar
  12. 12.
    de Wit, J. (2007) Heat storages for CHP optimisation. In Proceedings of the Power Gen Europe 2007 Paper (ID-94).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wesley Cole
    • 1
  • JongSuk Kim
    • 1
  • Kriti Kapoor
    • 1
  • Thomas Edgar
    • 1
  1. 1.McKetta Department of Chemical EngineeringUniversity of TexasAustinUSA

Personalised recommendations