Skip to main content

Sensorimotor Recalibration in Virtual Environments

  • Chapter
  • First Online:

Abstract

This chapter deals with the issue of resolving ambiguity between motion of objects in the world and self-motion that reflects the interdependence between multimodal signals. A growing body of evidence suggests that visual, vestibular, nonvisual, and non-vestibular aspects of virtual world immersion play an important role in self-motion perception. In this chapter, five experts from the fields of postural and locomotor control present the work they have engaged in to understand how the brain uses multiple pathways of sensory feedback to organize movement behavior. Each will discuss their work showing how VR may help us understand or engage the mechanisms underlying sensorimotor integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelaki, D. E. (1998). Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses to translation. Journal of Neurophysiology, 80(2), 680–695.

    CAS  PubMed  Google Scholar 

  • Anson, E., Agada, P., Fleming, H., Kiemel, T., & Jeka, J. (2010). Visual feedback to improve postural control during locomotion in the healthy elderly. Parkinsonism & Related Disorders, 16(Suppl 1), S79–S80.

    Article  Google Scholar 

  • Barclay-Goddard, R., Stevenson, T., Poluha, W., Moffatt, M., & Taback, S. (2005). Force platform feedback for standing balance training after stroke. Stroke, 36(2), 412–413.

    Article  Google Scholar 

  • Bateni, H. (2012). Changes in balance in older adults based on use of physical therapy vs the Wii Fit gaming system: A preliminary study. Physiotherapy, 98, 211–216.

    Article  PubMed  Google Scholar 

  • Bohil, C., Alicea, B., & Biocca, F. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews. Neuroscience, 12, 752–762.

    CAS  PubMed  Google Scholar 

  • Bonneaud, S., Rio, K., Chevaillier, P., Warren, W. H., et al. (2012). Accounting for patterns of collective behavior in crowd locomotor dynamics for realistic simulations. In Z. Pan (Ed.), Lecture notes in computer science: Transactions on edutainment VII (Vol. 7145, pp. 1–11). Heidelberg: Springer.

    Google Scholar 

  • Bonneaud, S., & Warren, W. H. (2012). A behavioral dynamics approach to modeling realistic pedestrian behavior. Proceedings of the 6th International Conference on Pedestrian and Evacuation Dynamics, Zurich, Switzerland (pp. 1–14).

    Google Scholar 

  • Bruggeman, H., Zosh, W., & Warren, W. H. (2007). Optic flow drives human visuo-locomotor adaptation. Current Biology, 17, 2035–2040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buccello-Stout, R., Bloomberg, J., Cohen, H., Whorton, E., Weaver, G., & Cromwell, R. (2008). Effects of sensorimotor adaptation training on functional mobility in older adults. Journal of Gerontology: Psychological Sciences, 63B(5), P295–P300.

    Article  Google Scholar 

  • Butler, J. S., Smith, S. T., Campos, J. L., & Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 10, 1–13.

    Article  Google Scholar 

  • Cheng, P., Wang, C., Chung, C., & Chen, C. (2004). Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clinical Rehabilitation, 18(7), 747–753.

    Article  PubMed  Google Scholar 

  • Cohn, J. V., DiZio, P., & Lackner, J. R. (2000). Reaching during virtual rotation: context specific compensations for expected coriolis forces. Journal of Neurophysiology, 83(6), 3230–3240.

    CAS  PubMed  Google Scholar 

  • Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34, 191–204.

    Article  PubMed  Google Scholar 

  • Darter, B., & Wilken, J. (2011). Gait training with virtual reality-based real time feedback: Improving gait performance following transfemoral amputation. Physical Therapy, 91(9), 1385–1394.

    Article  PubMed  Google Scholar 

  • Davlin-Pater, C. (2010). The effects of visual information and perceptual style on static and dynamic balance. Motor Control, 14, 362–370.

    PubMed  Google Scholar 

  • Deutsch, J., Borbely, M., Filler, J., Huhn, K., & Guarrera-Bowlby, P. (2008). Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy, 88, 1196–1207.

    Article  PubMed  Google Scholar 

  • Dichgans, J., Held, R., Young, L. R., & Brandt, T. (1972). Moving visual scenes influence the apparent direction of gravity. Science, 178, 1217–1219.

    Article  CAS  PubMed  Google Scholar 

  • Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 343–362.

    PubMed  Google Scholar 

  • Fajen, B. R., & Warren, W. H. (2007). Behavioral dynamics of intercepting a moving target. Experimental Brain Research, 180, 303–319.

    Article  PubMed  Google Scholar 

  • Gérin-Lajoie, M., Ciombor, D. M., Warren, W. H., & Aaron, R. K. (2010). Using ambulatory virtual environments for the assessment of functional gait impairment: A proof-of-concept study. Gait & Posture, 31, 533–536.

    Article  Google Scholar 

  • Geuss, M. N., Stefanucci, J. K., Creem-Regehr, S. H., & Thompson, W. B. (2012). Effect of viewing plane on perceived distances in real and virtual environments. Journal of Experimental Psychology: Human Perception and Performance, 38, 1242.

    PubMed  Google Scholar 

  • Gibson, J. J. (1950). Perception of the visual world. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals. British Journal of Psychology, 49, 182–194.

    Article  CAS  PubMed  Google Scholar 

  • Gottshall, K., Sessoms, P., & Bartlett, J. (2012, August). Vestibular physical therapy intervention: Utilizing a computer assisted rehabilitation environment in lieu of traditional physical therapy. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 6141–6144.

    Google Scholar 

  • Green, J., Anson, E., Agada, P., Rosenberg, R., Fleming, H., & Jeka, J. (2010). Visual feedback improves postural control during locomotion. Parkinsonism & Related Disorders, 16(Suppl 1), S81–S82.

    Article  Google Scholar 

  • Hardt, M. E., Held, R., & Steinbach, M. J. (1971). Adaptation to displaced vision: A change in the central control of sensorimotor coordination. Journal of Experimental Psychology, 89, 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. M., & Bonas, W. (2002). Optic flow and scene structure do not always contribute to the control of human walking. Vision Research, 42, 1619–1626.

    Article  PubMed  Google Scholar 

  • Harris, M. G., & Carre, G. (2001). Is optic flow used to guide walking while wearing a displacing prism? Perception, 30, 811–818.

    Article  CAS  PubMed  Google Scholar 

  • Held, R., & Freedman, S. J. (1963). Plasticity in human sensorimotor control. Science, 142, 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Hollerbach, J. M., Xu, Y., Christensen, R. R., & Jacobsen, S. C. (2000) Design specifications for the second generation Sarcos Treadport locomotion interface. Haptics Symposium, Proceedings of the ASME Dynamic Systems and Control Division (DSC-Vol 69-2, pp. 1293–1298). Orlando.

    Google Scholar 

  • Keshner, E. A., & Kenyon, R. V. (2000). The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. Journal of Vestibular Research, 10, 207–219.

    CAS  PubMed  Google Scholar 

  • Kiefer, A. W., Bruggeman, H., Woods, R., & Warren, W. H. (2012). Obstacle detection during walking by patients with tunnel vision. Journal of Vision, 12, 183.

    Article  Google Scholar 

  • Kiefer, A. W., Rhea, C. K., & Warren, W. H. (2009). VR-based assessment and rehabilitation of functional mobility. In F. Steinicke et al. (Eds.), Human walking in virtual environments: Perception, technology and applications. Heidelberg: Springer.

    Google Scholar 

  • Kuhl, S. A., Creem-Regehr, S. H., & Thompson, W. B. (2008). Recalibration of rotational locomotion in immersive virtual environments. ACM Transactions on Applied Perception, 5, 2–11.

    Article  Google Scholar 

  • Kuhl, S. A., Thompson, W. B., & Creem-Regehr, S. H. (2009). HMD calibration and its effects on distance judgments. ACM Transactions on Applied Perception, 6, 19.

    Article  Google Scholar 

  • Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2009). Evidence for motor simulation in imagined locomotion. Journal of Experimental Psychology: Human Perception and Performance, 35, 1458–1471.

    PubMed  Google Scholar 

  • Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2013). Does perceptual-motor calibration generalize across two different forms of locomotion? Investigations of walking and wheelchairs. PLoS One, 8, e54446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., & Creem-Regehr, S. H. (2009). Revisiting the effect of quality of graphics on distance judgments in virtual environments: A comparison of verbal reports and blind walking. Attention, Perception, & Psychophysics, 71, 1284–1293.

    Article  Google Scholar 

  • Lackner, J. R., & DiZio, P. (1988). Visual stimulation affects the perception of voluntary leg movements during walking. Perception, 17, 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Lambrey, S., & Berthoz, A. (2003). Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality. International Journal of Psychophysiology, 50, 101–115.

    Article  PubMed  Google Scholar 

  • Laver, K., Ratcliff, J., George, S., Burgess, L., & Crotty, M. (2011). Is the Nintendo Wii Fit really acceptable to older people?: A discrete choice experiment. BMC Geriatrics, 11, 64.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lishman, J. R., & Lee, D. N. (1973). The autonomy of visual kineasthesis. Perception, 2, 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology, 18, 906–921.

    CAS  PubMed  Google Scholar 

  • Mach, E. (1875). Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig: Engelmann.

    Google Scholar 

  • Man, D. (2010). Common issues of virtual reality in neuro-rehabilitation. In Prof. Jae-Jin Kim (Ed.), Virtual reality. InTech. ISBN: 978-953-307-518-1, doi: 10.5772/13547. Available from http://www.intechopen.com/books/virtual-reality/common-issues-of-virtual-reality-in-neuro-rehabilitation

  • Meldrum, D., Herdman, S., Moloney, R., Murray, D., Duffy, D., Malone, K., French, H., Hone, S., Conroy, R., & McConn-Walsh, R. (2012). Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial. BMC Ear Nose Throat Disord, 12, 3. doi: 10.1186/1472-6815-12-3.

  • Mohler, B. J., Creem-Regehr, S. H., & Thompson, W. B. (2006). The influence of feedback on egocentric distance judgments in real and virtual environmnets. In: Proceedings of the Third SIGGRAPH Symposium on Applied Perception in Graphics and Visualization.

    Google Scholar 

  • Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Willemsen, P., Pick, Jr. H. L., & Rieser, J. J. (2007) Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception, 4, 1–15.

    Google Scholar 

  • Morton, S. M., & Bastian, A. J. (2004, October). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92(4), 2497–24509.

    Google Scholar 

  • Moussaïd, M., Helbing, D., & Theraulaz, G. (2011). How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 108, 6884–6888.

    Article  Google Scholar 

  • Nashner, L. M. (1981). Analysis of stance posture in humans. In A. Towe & E. Luschei (Eds.), Handbook of behavioral neurobiology (vol 5) motor coordination. New York, NY: Plenum Press.

    Google Scholar 

  • Oie, K., Kiemel, T., & Jeka, J. (2002). Multisensory fusion: Simultaneous re-weighting of vision and touch for the control of human posture. Cognitive Brain Research, 14, 164–176.

    Article  PubMed  Google Scholar 

  • Ondrej, J., Pettré, J., Olivier, A.-H., & Donikian, S. (2010). A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics, 29(123), 121–129.

    Google Scholar 

  • Palmisano, S., Gillam, B. J., & Blackburn, S. G. (2000). Global-perspective jitter improves vection in central vision. Perception, 29(1), 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 1097–1118.

    CAS  PubMed  Google Scholar 

  • Richardson, A. R., & Waller, D. (2007). Interaction with an immersive virtual environment corrects users’ distance estimates. Human Factors, 49, 507–517.

    Article  PubMed  Google Scholar 

  • Riecke, B. E. (2009). Cognitive and higher-level contributions to illusory self-motion perception (“vection”): Does the possibility of actual motion affect vection? Japanese Journal of Psychonomic Science, 28(1), 135–139.

    Google Scholar 

  • Rieser, J. J., Ashmead, D. H., Taylor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675–689.

    Article  CAS  PubMed  Google Scholar 

  • Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception & Performance, 21, 480–497.

    CAS  Google Scholar 

  • Rio, K. W., Bonneaud, S., & Warren, W. H. (2012). A data-driven model of pedestrian following and emergent crowd behavior. Proceedings of the 6th International Conference on Pedestrian and Evacuation Dynamics, Zurich, Switzerland (pp. 1–15).

    Google Scholar 

  • Rushton, S. K., Harris, J. M., Lloyd, M., & Wann, J. P. (1998). Guidance of locomotion on foot uses perceived target location rather than optic flow. Current Biology, 8, 1191–1194.

    Article  CAS  PubMed  Google Scholar 

  • Stratton, G. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychol Review 3, 611–617.

    Google Scholar 

  • Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., & Willemsen, P. (2005). Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Transactions on Applied Perception, 2, 35–45.

    Article  Google Scholar 

  • Saunders, J. A., & Durgin, F. H. (2011). Adaptation to conflicting visual and physical heading directions during walking. Journal of Vision, 11, 1–10.

    Google Scholar 

  • Sihvonen, S., Sipilä, S., & Era, P. (2004). Changes in postural balance in frail elderly women during a 4-week visual feedback training: A randomized controlled trial. Gerontology, 50(2), 87–95.

    Article  PubMed  Google Scholar 

  • Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distance in visually immersive environments? Presence: Teleoperators and Virtual Environments, 13, 560–571.

    Article  Google Scholar 

  • Trevarthan, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31, 299–337.

    Article  Google Scholar 

  • Trillenberg, P., Shelhamer, M., Roberts, D. C., & Zee, D. S. (2003). Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex. Experimental Brain Research, 148, 158–165.

    CAS  PubMed  Google Scholar 

  • Turano, K. A., Yu, D., Hao, L., & Hicks, J. C. (2005). Optic-flow and egocentric-direction strategies in walking: Central vs. perhipheral visual field. Vision Research, 45, 3117–3132.

    Article  PubMed  Google Scholar 

  • Van Peppen, R. P., Kortsmit, M., Lindeman, E., & Kwakkel, G. (2006). Effects of visual feedback therapy on postural control in bilateral standing after stroke: A systematic review. Journal of Rehabilitation Medicine, 38(1), 3–9.

    Article  PubMed  Google Scholar 

  • Verhoeff, L., Horlings, C., Janssen, L., Bridenbaugh, S., & Allum, J. (2009). Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait & Posture, 30, 76–81.

    Article  Google Scholar 

  • Walker, C., Brouwer, B. J., & Culham, E. G. (2000). Use of visual feedback in retraining balance following acute stroke. Physical Therapy, 80(9), 886–895.

    CAS  PubMed  Google Scholar 

  • Wall, C., Wrisley, D., & Statler, K. (2009). Vibrotactile tilt feedback improves dynamic gait index: A fall risk indicator in older adults. Gait & Posture, 30, 16–21.

    Article  Google Scholar 

  • Warren, W. H. (1998). Visually controlled locomotion: 40 years later. Ecological Psychology, 10, 177–219.

    Article  Google Scholar 

  • Warren, W. H. (2008) Optic flow. In: T. D. Albright & R. Masland, Eds. The senses—a comprehensive reference: Vision II (Basbaum, A. I., et al., Eds., vol. 2, pp. 219–230). Oxford: Academic Press.

    Google Scholar 

  • Warren, W. H., & Fajen, B. R. (2008). Behavioral dynamics of visually-guided locomotion. In A. Fuchs & V. Jirsa (Eds.), Coordination: Neural, behavioral, and social dynamics. Springer: Heidelberg.

    Google Scholar 

  • Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4, 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Warren, W. H., Morris, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance, 14, 646–660.

    PubMed  Google Scholar 

  • Wei, M., & Angelaki, D. E. (2001). Cross-axis adaptation of the translational vestibulo-ocular reflex. Experimental Brain Research, 138, 304–312.

    Article  CAS  PubMed  Google Scholar 

  • Willemsen, P., Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2009). The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Transactions on Applied Perception, 6, 8.

    Article  Google Scholar 

  • Wood, R. (1895). The ‘Haunted Swing’ illusion. Psychological Review, 2(3), 277–278.

    Article  Google Scholar 

  • Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 1157–1160.

    Google Scholar 

  • Wright, W. G., Agah, M. R., Darvish, K., & Keshner, E. A. (2013). Head stabilization shows visual and inertial dependence during passive stimulation: Implications for virtual rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 191–197.

    Article  PubMed  Google Scholar 

  • Wright, W. G., DiZio, P., & Lackner, J. R. (2005). Vertical linear self-motion perception during visual and inertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research, 15(4), 185–195.

    CAS  PubMed  Google Scholar 

  • Wright, W. G., DiZio, P., & Lackner, J. R. (2006). Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. Journal of Vestibular Research, 16, 23–28.

    PubMed  Google Scholar 

  • Wright, W. G., & Glasauer, S. (2003). Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation. The Annals of the New York Academy of Sciences, 1004, 531–535.

    Article  Google Scholar 

  • Wright, W. G., & Glasauer, S. (2006). Subjective somatosensory vertical during dynamic tilt is dependent on task, inertial condition, and multisensory concordance. Experimental Brain Research, 172(3), 310–321.

    Article  CAS  PubMed  Google Scholar 

  • Wright, W. G., Schneider, E., & Glasauer, S. (2009). Compensatory manual motor responses while object wielding during combined linear visual and physical roll tilt stimulation. Experimental Brain Research, 192(4), 683–694.

    Article  PubMed  Google Scholar 

  • Wright, W.G., Schneider, E. (2009). Manual motor control during “virtual” self-motion: Implications for VR rehabilitation. IEEE Proc ICVR2009 (pp. 166–172).

    Google Scholar 

  • Xerri, C., Borel, L., Barthelemy, J., & Lacour, M. (1988). Synergistic interactions and functional working range of the visual and vestibular systems in postural control: Neuronal correlates. Progress in Brain Research, 76, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Tsai, M., Chuang, T., Sung, W., & Wang, R. (2008). Virtual reality-based training improves community ambulation in individuals with stroke: A randomized controlled trial. Gait & Posture, 28, 201–206.

    Article  Google Scholar 

  • Young, W., Ferguson, S., Brault, S., & Craig, C. (2010). Assessing and training standing balance in older adults: A novel approach using the ‘Nintendo Wii’ Balance Board. Gait & Posture, 33, 303–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Keshner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wright, W.G., Creem-Regehr, S.H., Warren, W.H., Anson, E.R., Jeka, J., Keshner, E.A. (2014). Sensorimotor Recalibration in Virtual Environments. In: Weiss, P., Keshner, E., Levin, M. (eds) Virtual Reality for Physical and Motor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0968-1_5

Download citation

Publish with us

Policies and ethics