Sensorimotor Recalibration in Virtual Environments

  • W. Geoffrey Wright
  • Sarah H. Creem-Regehr
  • William H. Warren
  • Eric R. Anson
  • John Jeka
  • Emily A. Keshner
Part of the Virtual Reality Technologies for Health and Clinical Applications book series (VRTHCA)


This chapter deals with the issue of resolving ambiguity between motion of objects in the world and self-motion that reflects the interdependence between multimodal signals. A growing body of evidence suggests that visual, vestibular, nonvisual, and non-vestibular aspects of virtual world immersion play an important role in self-motion perception. In this chapter, five experts from the fields of postural and locomotor control present the work they have engaged in to understand how the brain uses multiple pathways of sensory feedback to organize movement behavior. Each will discuss their work showing how VR may help us understand or engage the mechanisms underlying sensorimotor integration.


  1. Angelaki, D. E. (1998). Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses to translation. Journal of Neurophysiology, 80(2), 680–695.PubMedGoogle Scholar
  2. Anson, E., Agada, P., Fleming, H., Kiemel, T., & Jeka, J. (2010). Visual feedback to improve postural control during locomotion in the healthy elderly. Parkinsonism & Related Disorders, 16(Suppl 1), S79–S80.CrossRefGoogle Scholar
  3. Barclay-Goddard, R., Stevenson, T., Poluha, W., Moffatt, M., & Taback, S. (2005). Force platform feedback for standing balance training after stroke. Stroke, 36(2), 412–413.CrossRefGoogle Scholar
  4. Bateni, H. (2012). Changes in balance in older adults based on use of physical therapy vs the Wii Fit gaming system: A preliminary study. Physiotherapy, 98, 211–216.PubMedCrossRefGoogle Scholar
  5. Bohil, C., Alicea, B., & Biocca, F. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews. Neuroscience, 12, 752–762.PubMedGoogle Scholar
  6. Bonneaud, S., Rio, K., Chevaillier, P., Warren, W. H., et al. (2012). Accounting for patterns of collective behavior in crowd locomotor dynamics for realistic simulations. In Z. Pan (Ed.), Lecture notes in computer science: Transactions on edutainment VII (Vol. 7145, pp. 1–11). Heidelberg: Springer.Google Scholar
  7. Bonneaud, S., & Warren, W. H. (2012). A behavioral dynamics approach to modeling realistic pedestrian behavior. Proceedings of the 6th International Conference on Pedestrian and Evacuation Dynamics, Zurich, Switzerland (pp. 1–14).Google Scholar
  8. Bruggeman, H., Zosh, W., & Warren, W. H. (2007). Optic flow drives human visuo-locomotor adaptation. Current Biology, 17, 2035–2040.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Buccello-Stout, R., Bloomberg, J., Cohen, H., Whorton, E., Weaver, G., & Cromwell, R. (2008). Effects of sensorimotor adaptation training on functional mobility in older adults. Journal of Gerontology: Psychological Sciences, 63B(5), P295–P300.CrossRefGoogle Scholar
  10. Butler, J. S., Smith, S. T., Campos, J. L., & Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 10, 1–13.CrossRefGoogle Scholar
  11. Cheng, P., Wang, C., Chung, C., & Chen, C. (2004). Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clinical Rehabilitation, 18(7), 747–753.PubMedCrossRefGoogle Scholar
  12. Cohn, J. V., DiZio, P., & Lackner, J. R. (2000). Reaching during virtual rotation: context specific compensations for expected coriolis forces. Journal of Neurophysiology, 83(6), 3230–3240.PubMedGoogle Scholar
  13. Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34, 191–204.PubMedCrossRefGoogle Scholar
  14. Darter, B., & Wilken, J. (2011). Gait training with virtual reality-based real time feedback: Improving gait performance following transfemoral amputation. Physical Therapy, 91(9), 1385–1394.PubMedCrossRefGoogle Scholar
  15. Davlin-Pater, C. (2010). The effects of visual information and perceptual style on static and dynamic balance. Motor Control, 14, 362–370.PubMedGoogle Scholar
  16. Deutsch, J., Borbely, M., Filler, J., Huhn, K., & Guarrera-Bowlby, P. (2008). Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy, 88, 1196–1207.PubMedCrossRefGoogle Scholar
  17. Dichgans, J., Held, R., Young, L. R., & Brandt, T. (1972). Moving visual scenes influence the apparent direction of gravity. Science, 178, 1217–1219.PubMedCrossRefGoogle Scholar
  18. Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 343–362.PubMedGoogle Scholar
  19. Fajen, B. R., & Warren, W. H. (2007). Behavioral dynamics of intercepting a moving target. Experimental Brain Research, 180, 303–319.PubMedCrossRefGoogle Scholar
  20. Gérin-Lajoie, M., Ciombor, D. M., Warren, W. H., & Aaron, R. K. (2010). Using ambulatory virtual environments for the assessment of functional gait impairment: A proof-of-concept study. Gait & Posture, 31, 533–536.CrossRefGoogle Scholar
  21. Geuss, M. N., Stefanucci, J. K., Creem-Regehr, S. H., & Thompson, W. B. (2012). Effect of viewing plane on perceived distances in real and virtual environments. Journal of Experimental Psychology: Human Perception and Performance, 38, 1242.PubMedGoogle Scholar
  22. Gibson, J. J. (1950). Perception of the visual world. Boston, MA: Houghton Mifflin.Google Scholar
  23. Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals. British Journal of Psychology, 49, 182–194.PubMedCrossRefGoogle Scholar
  24. Gottshall, K., Sessoms, P., & Bartlett, J. (2012, August). Vestibular physical therapy intervention: Utilizing a computer assisted rehabilitation environment in lieu of traditional physical therapy. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 6141–6144.Google Scholar
  25. Green, J., Anson, E., Agada, P., Rosenberg, R., Fleming, H., & Jeka, J. (2010). Visual feedback improves postural control during locomotion. Parkinsonism & Related Disorders, 16(Suppl 1), S81–S82.CrossRefGoogle Scholar
  26. Hardt, M. E., Held, R., & Steinbach, M. J. (1971). Adaptation to displaced vision: A change in the central control of sensorimotor coordination. Journal of Experimental Psychology, 89, 229–239.PubMedCrossRefGoogle Scholar
  27. Harris, J. M., & Bonas, W. (2002). Optic flow and scene structure do not always contribute to the control of human walking. Vision Research, 42, 1619–1626.PubMedCrossRefGoogle Scholar
  28. Harris, M. G., & Carre, G. (2001). Is optic flow used to guide walking while wearing a displacing prism? Perception, 30, 811–818.PubMedCrossRefGoogle Scholar
  29. Held, R., & Freedman, S. J. (1963). Plasticity in human sensorimotor control. Science, 142, 455–462.PubMedCrossRefGoogle Scholar
  30. Hollerbach, J. M., Xu, Y., Christensen, R. R., & Jacobsen, S. C. (2000) Design specifications for the second generation Sarcos Treadport locomotion interface. Haptics Symposium, Proceedings of the ASME Dynamic Systems and Control Division (DSC-Vol 69-2, pp. 1293–1298). Orlando.Google Scholar
  31. Keshner, E. A., & Kenyon, R. V. (2000). The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. Journal of Vestibular Research, 10, 207–219.PubMedGoogle Scholar
  32. Kiefer, A. W., Bruggeman, H., Woods, R., & Warren, W. H. (2012). Obstacle detection during walking by patients with tunnel vision. Journal of Vision, 12, 183.CrossRefGoogle Scholar
  33. Kiefer, A. W., Rhea, C. K., & Warren, W. H. (2009). VR-based assessment and rehabilitation of functional mobility. In F. Steinicke et al. (Eds.), Human walking in virtual environments: Perception, technology and applications. Heidelberg: Springer.Google Scholar
  34. Kuhl, S. A., Creem-Regehr, S. H., & Thompson, W. B. (2008). Recalibration of rotational locomotion in immersive virtual environments. ACM Transactions on Applied Perception, 5, 2–11.CrossRefGoogle Scholar
  35. Kuhl, S. A., Thompson, W. B., & Creem-Regehr, S. H. (2009). HMD calibration and its effects on distance judgments. ACM Transactions on Applied Perception, 6, 19.CrossRefGoogle Scholar
  36. Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2009). Evidence for motor simulation in imagined locomotion. Journal of Experimental Psychology: Human Perception and Performance, 35, 1458–1471.PubMedGoogle Scholar
  37. Kunz, B. R., Creem-Regehr, S. H., & Thompson, W. B. (2013). Does perceptual-motor calibration generalize across two different forms of locomotion? Investigations of walking and wheelchairs. PLoS One, 8, e54446.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., & Creem-Regehr, S. H. (2009). Revisiting the effect of quality of graphics on distance judgments in virtual environments: A comparison of verbal reports and blind walking. Attention, Perception, & Psychophysics, 71, 1284–1293.CrossRefGoogle Scholar
  39. Lackner, J. R., & DiZio, P. (1988). Visual stimulation affects the perception of voluntary leg movements during walking. Perception, 17, 71–80.PubMedCrossRefGoogle Scholar
  40. Lambrey, S., & Berthoz, A. (2003). Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality. International Journal of Psychophysiology, 50, 101–115.PubMedCrossRefGoogle Scholar
  41. Laver, K., Ratcliff, J., George, S., Burgess, L., & Crotty, M. (2011). Is the Nintendo Wii Fit really acceptable to older people?: A discrete choice experiment. BMC Geriatrics, 11, 64.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lishman, J. R., & Lee, D. N. (1973). The autonomy of visual kineasthesis. Perception, 2, 287–294.PubMedCrossRefGoogle Scholar
  43. Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology, 18, 906–921.PubMedGoogle Scholar
  44. Mach, E. (1875). Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig: Engelmann.Google Scholar
  45. Man, D. (2010). Common issues of virtual reality in neuro-rehabilitation. In Prof. Jae-Jin Kim (Ed.), Virtual reality. InTech. ISBN: 978-953-307-518-1, doi:  10.5772/13547. Available from
  46. Meldrum, D., Herdman, S., Moloney, R., Murray, D., Duffy, D., Malone, K., French, H., Hone, S., Conroy, R., & McConn-Walsh, R. (2012). Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial. BMC Ear Nose Throat Disord, 12, 3. doi:  10.1186/1472-6815-12-3.
  47. Mohler, B. J., Creem-Regehr, S. H., & Thompson, W. B. (2006). The influence of feedback on egocentric distance judgments in real and virtual environmnets. In: Proceedings of the Third SIGGRAPH Symposium on Applied Perception in Graphics and Visualization.Google Scholar
  48. Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Willemsen, P., Pick, Jr. H. L., & Rieser, J. J. (2007) Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception, 4, 1–15.Google Scholar
  49. Morton, S. M., & Bastian, A. J. (2004, October). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92(4), 2497–24509.Google Scholar
  50. Moussaïd, M., Helbing, D., & Theraulaz, G. (2011). How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 108, 6884–6888.CrossRefGoogle Scholar
  51. Nashner, L. M. (1981). Analysis of stance posture in humans. In A. Towe & E. Luschei (Eds.), Handbook of behavioral neurobiology (vol 5) motor coordination. New York, NY: Plenum Press.Google Scholar
  52. Oie, K., Kiemel, T., & Jeka, J. (2002). Multisensory fusion: Simultaneous re-weighting of vision and touch for the control of human posture. Cognitive Brain Research, 14, 164–176.PubMedCrossRefGoogle Scholar
  53. Ondrej, J., Pettré, J., Olivier, A.-H., & Donikian, S. (2010). A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics, 29(123), 121–129.Google Scholar
  54. Palmisano, S., Gillam, B. J., & Blackburn, S. G. (2000). Global-perspective jitter improves vection in central vision. Perception, 29(1), 57–67.PubMedCrossRefGoogle Scholar
  55. Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 1097–1118.PubMedGoogle Scholar
  56. Richardson, A. R., & Waller, D. (2007). Interaction with an immersive virtual environment corrects users’ distance estimates. Human Factors, 49, 507–517.PubMedCrossRefGoogle Scholar
  57. Riecke, B. E. (2009). Cognitive and higher-level contributions to illusory self-motion perception (“vection”): Does the possibility of actual motion affect vection? Japanese Journal of Psychonomic Science, 28(1), 135–139.Google Scholar
  58. Rieser, J. J., Ashmead, D. H., Taylor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675–689.PubMedCrossRefGoogle Scholar
  59. Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception & Performance, 21, 480–497.Google Scholar
  60. Rio, K. W., Bonneaud, S., & Warren, W. H. (2012). A data-driven model of pedestrian following and emergent crowd behavior. Proceedings of the 6th International Conference on Pedestrian and Evacuation Dynamics, Zurich, Switzerland (pp. 1–15).Google Scholar
  61. Rushton, S. K., Harris, J. M., Lloyd, M., & Wann, J. P. (1998). Guidance of locomotion on foot uses perceived target location rather than optic flow. Current Biology, 8, 1191–1194.PubMedCrossRefGoogle Scholar
  62. Stratton, G. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychol Review 3, 611–617.Google Scholar
  63. Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., & Willemsen, P. (2005). Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Transactions on Applied Perception, 2, 35–45.CrossRefGoogle Scholar
  64. Saunders, J. A., & Durgin, F. H. (2011). Adaptation to conflicting visual and physical heading directions during walking. Journal of Vision, 11, 1–10.Google Scholar
  65. Sihvonen, S., Sipilä, S., & Era, P. (2004). Changes in postural balance in frail elderly women during a 4-week visual feedback training: A randomized controlled trial. Gerontology, 50(2), 87–95.PubMedCrossRefGoogle Scholar
  66. Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distance in visually immersive environments? Presence: Teleoperators and Virtual Environments, 13, 560–571.CrossRefGoogle Scholar
  67. Trevarthan, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31, 299–337.CrossRefGoogle Scholar
  68. Trillenberg, P., Shelhamer, M., Roberts, D. C., & Zee, D. S. (2003). Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex. Experimental Brain Research, 148, 158–165.PubMedGoogle Scholar
  69. Turano, K. A., Yu, D., Hao, L., & Hicks, J. C. (2005). Optic-flow and egocentric-direction strategies in walking: Central vs. perhipheral visual field. Vision Research, 45, 3117–3132.PubMedCrossRefGoogle Scholar
  70. Van Peppen, R. P., Kortsmit, M., Lindeman, E., & Kwakkel, G. (2006). Effects of visual feedback therapy on postural control in bilateral standing after stroke: A systematic review. Journal of Rehabilitation Medicine, 38(1), 3–9.PubMedCrossRefGoogle Scholar
  71. Verhoeff, L., Horlings, C., Janssen, L., Bridenbaugh, S., & Allum, J. (2009). Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait & Posture, 30, 76–81.CrossRefGoogle Scholar
  72. Walker, C., Brouwer, B. J., & Culham, E. G. (2000). Use of visual feedback in retraining balance following acute stroke. Physical Therapy, 80(9), 886–895.PubMedGoogle Scholar
  73. Wall, C., Wrisley, D., & Statler, K. (2009). Vibrotactile tilt feedback improves dynamic gait index: A fall risk indicator in older adults. Gait & Posture, 30, 16–21.CrossRefGoogle Scholar
  74. Warren, W. H. (1998). Visually controlled locomotion: 40 years later. Ecological Psychology, 10, 177–219.CrossRefGoogle Scholar
  75. Warren, W. H. (2008) Optic flow. In: T. D. Albright & R. Masland, Eds. The senses—a comprehensive reference: Vision II (Basbaum, A. I., et al., Eds., vol. 2, pp. 219–230). Oxford: Academic Press.Google Scholar
  76. Warren, W. H., & Fajen, B. R. (2008). Behavioral dynamics of visually-guided locomotion. In A. Fuchs & V. Jirsa (Eds.), Coordination: Neural, behavioral, and social dynamics. Springer: Heidelberg.Google Scholar
  77. Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4, 213–216.PubMedCrossRefGoogle Scholar
  78. Warren, W. H., Morris, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance, 14, 646–660.PubMedGoogle Scholar
  79. Wei, M., & Angelaki, D. E. (2001). Cross-axis adaptation of the translational vestibulo-ocular reflex. Experimental Brain Research, 138, 304–312.PubMedCrossRefGoogle Scholar
  80. Willemsen, P., Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2009). The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Transactions on Applied Perception, 6, 8.CrossRefGoogle Scholar
  81. Wood, R. (1895). The ‘Haunted Swing’ illusion. Psychological Review, 2(3), 277–278.CrossRefGoogle Scholar
  82. Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 1157–1160.Google Scholar
  83. Wright, W. G., Agah, M. R., Darvish, K., & Keshner, E. A. (2013). Head stabilization shows visual and inertial dependence during passive stimulation: Implications for virtual rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 191–197.PubMedCrossRefGoogle Scholar
  84. Wright, W. G., DiZio, P., & Lackner, J. R. (2005). Vertical linear self-motion perception during visual and inertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research, 15(4), 185–195.PubMedGoogle Scholar
  85. Wright, W. G., DiZio, P., & Lackner, J. R. (2006). Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. Journal of Vestibular Research, 16, 23–28.PubMedGoogle Scholar
  86. Wright, W. G., & Glasauer, S. (2003). Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation. The Annals of the New York Academy of Sciences, 1004, 531–535.CrossRefGoogle Scholar
  87. Wright, W. G., & Glasauer, S. (2006). Subjective somatosensory vertical during dynamic tilt is dependent on task, inertial condition, and multisensory concordance. Experimental Brain Research, 172(3), 310–321.PubMedCrossRefGoogle Scholar
  88. Wright, W. G., Schneider, E., & Glasauer, S. (2009). Compensatory manual motor responses while object wielding during combined linear visual and physical roll tilt stimulation. Experimental Brain Research, 192(4), 683–694.PubMedCrossRefGoogle Scholar
  89. Wright, W.G., Schneider, E. (2009). Manual motor control during “virtual” self-motion: Implications for VR rehabilitation. IEEE Proc ICVR2009 (pp. 166–172).Google Scholar
  90. Xerri, C., Borel, L., Barthelemy, J., & Lacour, M. (1988). Synergistic interactions and functional working range of the visual and vestibular systems in postural control: Neuronal correlates. Progress in Brain Research, 76, 193–203.PubMedCrossRefGoogle Scholar
  91. Yang, Y., Tsai, M., Chuang, T., Sung, W., & Wang, R. (2008). Virtual reality-based training improves community ambulation in individuals with stroke: A randomized controlled trial. Gait & Posture, 28, 201–206.CrossRefGoogle Scholar
  92. Young, W., Ferguson, S., Brault, S., & Craig, C. (2010). Assessing and training standing balance in older adults: A novel approach using the ‘Nintendo Wii’ Balance Board. Gait & Posture, 33, 303–305.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • W. Geoffrey Wright
    • 1
  • Sarah H. Creem-Regehr
    • 2
  • William H. Warren
    • 3
  • Eric R. Anson
    • 4
  • John Jeka
    • 5
  • Emily A. Keshner
    • 6
  1. 1.Departments of Physical Therapy and Biomedical EngineeringTemple UniversityPhiladelphiaUSA
  2. 2.Department of PsychologyUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Cognitive, Linguistic, and Psychological SciencesBrown UniversityProvidenceUSA
  4. 4.Department of KinesiologyUniversity of MarylandCollege ParkUSA
  5. 5.Department of KinesiologyTemple UniversityPhiladelphiaUSA
  6. 6.Department of Physical Therapy and Department of Electrical and Computer EngineeringTemple UniversityPhiladelphiaUSA

Personalised recommendations