Landscape assessment and monitoring

  • Valentín Gómez-Sanz
  • Robert G. H. Bunce
  • Ramón Elena-Rosselló


In the present chapter, we provide a basis for discussing some of the main issues concerning the dynamic behavior of landscape systems, and ways to assess their changes over time. We present an illustrative description of a particular Spanish monitoring program in which the authors have been involved. First, we describe landscapes as complex systems with ecosystems that exhibit inherently dynamic behavior. In the following section, we cover the topic of how to study landscape changes, and discuss some of the tools that have been most widely used in recent years. Section 2 discusses the main restrictions and limitations of these approaches, and Sect. 3 discusses the basic procedures used for landscape monitoring and assessment. Finally, Sect. 4 describes one assessment and monitoring program, the Spanish Rural Landscape Monitoring System (SISPARES), identifies bottlenecks, and assesses the system’s strengths and weaknesses. The overall purpose of the chapter is to provide readers with methodological tools to identify and evaluate structural and functional changes in landscapes, thereby supporting the development of guidelines for effective and sustainable landscape management.


Geographical Information System Cover Type Landscape Pattern Landscape Structure Landscape Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Bodin O, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405CrossRefGoogle Scholar
  2. Bolliger J, Mladenoff DJ (2005) Quantifying spatial classification uncertainties of the historical Wisconsin landscape (USA). Ecography 28:141–156CrossRefGoogle Scholar
  3. Bolliger J, Kienast F, Zimmermann NE (2000) Risk of global warming on montane subalpine forest in Switzerland—a modeling study. Reg Environ Change 1:99–111CrossRefGoogle Scholar
  4. Bolliger J, Lischke H, Green DG (2005) Simulating the spatial and temporal dynamics of landscapes using generic and complex models. Ecol Complex 2(2):483–496Google Scholar
  5. Bolliger J, Wagner HH, Turner MG (2009) Identifying and quantifying landscape patterns in space and time. In: Kienast F, Wildi O, Ghosh S (eds) A changing world. Challenges for landscape research. Springer Science + Business Media, New York, pp 177–194Google Scholar
  6. Brown DG, Aspinall R, Bennett DA (2006) Landscape models and explanation in landscape ecology—a space for generative landscape science. Prof Geogr 18(4):369–382CrossRefGoogle Scholar
  7. Brunt JW (2000) Data management principles, implementation and administration. In: Michener WK, Brunt JW (eds) Ecological data: design, management and processing. Blackwell Science, Oxford, pp 25–47Google Scholar
  8. Buchecker M, Kianicka S, Junker B (2009) Value systems: drivers of human-landscape interactions. In: Kienast F, Wildi O, Ghosh S (eds) A changing world. Challenges for landscape research. Springer Science + Business Media, New York, pp 7–26Google Scholar
  9. Bunce RGH, Smith RS (1978) An ecological survey of Cumbria. Cumbria Country Council, KendalGoogle Scholar
  10. Bunce RGH, Barr CJ, Clarke RT, Howard DC, Lane AMJ (1996a) ITE Merlewood land classification of Great Britain. J Biogeogr 23(5):625–634CrossRefGoogle Scholar
  11. Bunce RGH, Barr CJ, Gillespie MK, Howard DC (1996b) The ITE land classification: providing an environmental stratification of Great Britain. Environ Monit Assess 39(1–3):39–46PubMedCrossRefGoogle Scholar
  12. Bunce RGH, Metzger MJ, Jongman RHG, Brandt J, de Blust G, Elena-Rosselló R, Groom GB, Halada L, Hofer G, Howard DC, Kovar P, Mucher CA, Padoa-Schioppa E, Paelinx D, Palo A, Perez-Soba M, Ramos IL, Roche P, Skanes H, Wrbka T (2008) A standardized procedure for surveillance and monitoring European habitats and provision of spatial data. Landsc Ecol 23:11–25. doi: 10.1007/s10980-007-9173-8 CrossRefGoogle Scholar
  13. Bürgi M, Hersperger AM, Hall M, Southgate WB, Schneeberger N (2009) Using the past to understand the present land use and land cover. In: Kienast F, Wildi O, Ghosh S (eds) A changing world. Challenges for landscape research. Springer Science + Business Media, New York, pp 133–144Google Scholar
  14. COE (2000) European landscape convention. Council of Europe, Strasbourg.
  15. Cousins SAO, Lindborg R (2002) Assessing changes in plant distribution patterns—indicator species versus plant distribution types. Ecol Indic 1:17–27Google Scholar
  16. Dale VA (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10CrossRefGoogle Scholar
  17. De’Ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192CrossRefGoogle Scholar
  18. EGIF (2009) Los incendios forestales en España. Technical report of “Area de Defensa Contra Incendios Forestales” of the Spanish Ministry of the Environment, Madrid (in Spanish)Google Scholar
  19. Eiden G, Kayadjanian M, Vidal C (2000) Chapter 2. Quantifying landscape structures: spatial and temporal dimensions. In: Commission E (ed) From land cover to landscape diversity in the European Union. European Commission, BrusselsGoogle Scholar
  20. Elena-Rosselló R, Ferreiro GT, Castejón Ayuso MA, Palomares OS (1993) Clasificación biogeoclimática territorial de España (CLATERES): una herramienta de utilidad para planificar la reforestación de España. Montes 33:50–56 (in Spanish)Google Scholar
  21. Elena-Rosselló R, Tella G, Castejón M (1996) Clasificación biogeoclimática de España peninsular y balear. Ministerio de Agricultura, Pesca y Alimentación, Madrid (in Spanish)Google Scholar
  22. Elena-Rosselló R, Kelly M, Martín A, González-Avila S, Sánchez de Ron D, García del Barrio JM (2013) Recent dynamics of oak woodlands: a comparative ecological study at landscape scale. In: Campos-Palacin P, Hutsinger L, Oviedo JL (eds) Mediterranean oak woodland working landscapes: Dehesas of Spain and Ranchlands of California. Springer, Dordrecht, pp 427–459CrossRefGoogle Scholar
  23. Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network analysis: network construcción. Ecol Model 208(1):49–65CrossRefGoogle Scholar
  24. Forman RTT, Godron M (1981) Patches and structural components for landscape ecology. Bioscience 31:733–740CrossRefGoogle Scholar
  25. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  26. García del Barrio JM, Bolaños F, Elena-Rosselló R (2003) Clasificación de los paisajes rurales españoles según su composición espacial. Invest Agrar Sist Recur For 12(3):5–17 (in Spanish)Google Scholar
  27. García-Feced C, González-Ávila S, Elena-Rosselló R (2008) Metodología para la tipificación y caracterización estructural de paisajes en comarcas forestales españolas. Invest Agrar Sist Recur For 17:130–142 (in Spanish)Google Scholar
  28. García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manage 261(1):154–161CrossRefGoogle Scholar
  29. Gibson CC, Ostrom E, Anh TK (2000) The concept of scale and human dimensions of global change: a survey. Ecol Econ 32:217–239CrossRefGoogle Scholar
  30. Heinz Center (2008) Landscape pattern indicators for the nation. H. John Heinz III Center for Science, Economics, and the Environment, Washington, DCGoogle Scholar
  31. Howard DC, Bunce RGH (1996) The countryside information system: a strategic level decision support system. Environ Monit Assess 39:373–384PubMedCrossRefGoogle Scholar
  32. Howard DC, Petit S, Bunce RGH (2000) Monitoring multi-functional landscape at a national scale—guidelines drawn up from the countryside survey of Great Britain. In: Brandt J, Tress B, Tress G (eds) Multifunctional landscapes: interdisciplinary approaches to landscape research and management. Centre for Landscape Research, Roskilde, pp 51–62Google Scholar
  33. Ihse M (1995) Swedish agricultural landscapes—patterns and changes during the last 50 years, studied by aerial photos. Landsc Urban Plan 31:21–37CrossRefGoogle Scholar
  34. Irwin E, Geoghegan J (2001) Theory, data, methods: developing spatially-explicit economic models of land use change. Agric Ecosyst Environ 85:7–24CrossRefGoogle Scholar
  35. Kaufmann E, Schwyzer A (2001) Control survey of the terrestrial inventory. In: Brassel P, Lischke H (eds) National forest inventory: methods and models of the second assessment. Swiss Federal Research Institute WSL, Birmensdorf, pp 114–124Google Scholar
  36. King AW, Perera AH (2007) Transfer and extension of forest landscape ecology: a matter of models and scale. In: Perera AH, Buse LJ, Crow TR (eds) Forest landscape ecology. Springer Science + Business Media, New York, pp 19–41Google Scholar
  37. Lanz A, Brändli M, Baltensweiler A (2009) A large-scale, long term view on collecting and sharing landscape data. In: Kienast F, Wildi O, Ghosh S (eds) A changing world. Challenges for landscape research. Springer Science + Business Media, New York, pp 93–111Google Scholar
  38. Lausch A, Herzog F (2002) Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecol Indic 2:3–15CrossRefGoogle Scholar
  39. Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399CrossRefGoogle Scholar
  40. Li X, Yeh AG (2002) Neural-network-based cellular-automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16(4):323–344CrossRefGoogle Scholar
  41. Lischke H, Bolliger J, Seppelt R (2009) Dynamic spatio-temporal landscape models. In: Kienast F, Wildi O, Ghosh S (eds) A changing world. Challenges for landscape research. Springer Science + Business Media, New York, pp 273–296Google Scholar
  42. Martin-Martin C, Saura S, Bunce B, Elena-Rosselló R (2013) Recent changes in landscape forest connectivity and spatial patterns in Spain: interactions with wildfire vulnerability assessed through the SISPARES monitoring framework. Ecol Indic. doi: 10.1016/j.ecolind.2013.01.018
  43. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software. University of Massachusetts, Amherst.
  44. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) Climatic stratification of the environment of Europe. Global Ecol Biogeogr 14(6):549–563CrossRefGoogle Scholar
  45. O’Neill RV, Johnson AR, King AW (1989) A hierarchical framework for the analysis of scale. Landsc Ecol 3:193–205CrossRefGoogle Scholar
  46. Ortega M, Bunce RGH, García del Barrio JM, Elena-Rosselló R (2008) The relative dependence of Spanish landscape pattern on environmental and geographical variables over time. Invest Agrar Sist Recur For 17:114–129Google Scholar
  47. Ortega M, Metzger M, Bunce RGH, Wrbka T, Allard A, Jongman RHG, Elena-Rosselló R (2012a) The potential for integration of environmental data from regional stratifications into a European monitoring framework. J Environ Plan Manage 55:39–57CrossRefGoogle Scholar
  48. Ortega M, Saura S, González-Avila S, Gómez-Sanz V, Elena-Rosselló R (2012b) Landscape vulnerability to wildfires at the forest–agriculture interface: half-century patterns in Spain assessed through the SISPARES monitoring framework. Agrofor Syst 85:331–349. doi: 10.1007/s10457-011-9423-2 CrossRefGoogle Scholar
  49. Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139CrossRefGoogle Scholar
  50. Stierlin HR (2001) Criteria and previsions for quality assurance. In: Brassel P, Lischke H (eds) National forest inventory: methods and models of the second assessment. Swiss Federal Research Institute WSL, Birmensdorf, pp 109–113Google Scholar
  51. Syrbe RU, Bastian O, Röder M, James P (2007) A framework for monitoring landscape functions: the Saxon Academy Landscape Monitoring Approach (SALMA), exemplified by soil investigations in the Kleine Spree floodplain (Saxony, Germany). Landsc Urban Plan 79:190–199. doi: 10.1016/j.landurbplan.2006.02.005 CrossRefGoogle Scholar
  52. Turner MG (1989) Landscape ecology: the effect of pattern and process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  53. Turner II BL, Skole DL, Sanderson S, Fischer G, Fresco LO, Leemans R (1995) Land-use and land-cover change—science/research plan. International Geosphere–Biosphere Programme, IGBP Report No. 35, Royal Swedish Academy of Sciences, StockholmGoogle Scholar
  54. Turner MG, Ruscher CL (1988) Changes in landscape patterns in Georgia, USA. Landsc Ecol 1(4):241–251CrossRefGoogle Scholar
  55. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New YorkGoogle Scholar
  56. Urban DL (2002) Tactical monitoring of landscapes. In: Liu J, Taylor WW (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge, pp 294–311CrossRefGoogle Scholar
  57. Urban DL, O’Neil RV, Shugart HH (1987) Landscape ecology. Bioscience 37:119–127CrossRefGoogle Scholar
  58. Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landsc Ecol 21:1171–1183. doi: 10.1007/s10980-006-0029-4 CrossRefGoogle Scholar
  59. Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modeling: current practice and research priorities. GeoJournal 61:309–324CrossRefGoogle Scholar
  60. Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987CrossRefGoogle Scholar
  61. Wu J, Hobbes R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Valentín Gómez-Sanz
    • 1
  • Robert G. H. Bunce
    • 2
  • Ramón Elena-Rosselló
    • 1
  1. 1.Ecología y Gestión Forestal Sostenible (ECOGESFOR) Research GroupUniversidad Politécnica de Madrid (UPM)MadridSpain
  2. 2.Estonian University of Life SciencesTartuEstonia

Personalised recommendations