Skip to main content

Wildfires and landscape dynamics in Portugal: a regional assessment and global implications

  • Chapter
  • First Online:
Forest Landscapes and Global Change

Abstract

Wildfire is an important and complex factor that both shapes landscapes and is shaped by landscapes. In this chapter, we discuss some of the factors that have shaped wildfire frequency and size in Portugal from a landscape perspective and describe the expected changes that will result from a combination of the predicted future climate change and socioeconomic changes such as the abandonment of agricultural land. Some landscapes, such as shrublands, are more vulnerable to fire than others, and the frequency and size of wildfires depend in complex ways on the proximity to humans, who provide both the major source of fire ignition (humans are responsible for more than 95 % of all wildfires in Portugal) and the major agent for fire suppression. Based on the results of our analysis in Portugal, we propose some generalizations that are likely to apply to other regions around the world, such as the need to manage and coexist with fire rather than adopting a strategy based exclusively on fire suppression. This will become particularly important in the context of global climate change, which is expected to increase wildfire frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Acácio V, Holmgren M, Rego F, Moreira F, Mohren G (2009) Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforest Syst 76:389–400

    Article  Google Scholar 

  • Arianoutsou M (2001) Landscape changes in Mediterranean ecosystems of Greece: implications for fire and biodiversity issues. J Mediterr Ecol 2:165–178

    Google Scholar 

  • Badia-Perpinyã A, Pallares-Barbera M (2006) Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia. Int J Wildl Fire 15:187–196

    Article  Google Scholar 

  • Bajocco S, Ricotta C (2008) Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? Landsc Ecol 23:241–248

    Article  Google Scholar 

  • Birot Y, Rigolot E (2009) The need for strategy anticipating climate and other changes. In: Birot Y (ed), Living with wildfire: what science can tell us. EFI discussion paper, vol 15. European Forest Institute, Joensuu, pp 75–78

    Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Bowman D, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324:481–484. doi:10.1126/science.1163886

    Article  CAS  PubMed  Google Scholar 

  • Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236. doi:10.1111/j.1365-2699.2011.02595.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Brennan WJ (2010) Thresholds of climate change in ecosystems. Diane Publishing, Darby, PA

    Google Scholar 

  • Burrows ND (2008) Linking fire ecology and fire management in south-west Australian forest landscapes. For Ecol Manage 255:2394–2406

    Article  Google Scholar 

  • Cardille JA, Ventura SJ (2001) Occurrence of wildfire in the northern Great Lakes region: effects of land cover and land ownership assessed at multiple scales. Int J Wildl Fire 10(2):145–154

    Article  Google Scholar 

  • Cardille JA, Ventura SJ, Turner MG (2001) Environmental and social factors influencing wildfires in the Upper Midwest, USA. Ecol Appl 11(1):111–127

    Article  Google Scholar 

  • Carmo M, Moreira F, Casimiro P, Vaz P (2011) Land use and topography influences on wildfire occurrence in northern Portugal. Landsc Urban Plan 100:169–176

    Article  Google Scholar 

  • Carreiras JMB, Pereira JMC (2006) An inductive fire risk map for Portugal. In: Viegas DX (ed) Proceedings of the fifth international conference on forest fire research, 27–30 November 2006, Figueira da Foz, Portugal. Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI), Coimbra, Portugal

    Google Scholar 

  • Catry FX, Damasceno P, Silva JS, Galante M, Moreira F (2007) Spatial distribution patterns of wildfire ignitions in Portugal. In: Proceedings of the fourth international wildland fire conference, 13–17 May 2007, Ministerio de Medio Ambiente, Seville, Spain (CD ROM)

    Google Scholar 

  • Catry FX, Rego FC, Bação FF, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. Int J Wildl Fire 18:921–931

    Article  Google Scholar 

  • Chuvieco E (1999) Measuring changes in landscape pattern from satellite images: short-term effects of fire on spatial diversity. Int J Remote Sens 20:2331–2346

    Article  Google Scholar 

  • Chuvieco E, Allgöwer B, Salas J (2003) Integration of physical and human factors in fire danger assessment. In: Chuvieco E (ed) Wildland fire danger estimation and mapping. The role of remote sensing data, vol 4. World Scientific Publishing, Singapore, pp 197–218

    Google Scholar 

  • Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecol Appl 11:97–110

    Article  Google Scholar 

  • DGRF (2006) Incêndios florestais—Relatório de 2005. Divisão de Defesa da Floresta Contra Incêndios. Direcção-Geral dos Recursos Florestais Report, Lisbon, Portugal (in Portuguese)

    Google Scholar 

  • Espelta JM, Verkaik I, Eugenio M, Lloret F (2008) Recurrent wildfires constrain long-term reproduction ability in Pinus halepensis Mill. Int J Wildl Fire 17:579–585

    Article  Google Scholar 

  • FAO (1986) Wildland fire management terminology. FAO forestry paper 70. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fernandes P, Botelho H (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildl Fire 12:117–128

    Article  Google Scholar 

  • Fernandes P, Rigolot E (2007) The fire ecology and management of maritime pine (Pinus pinaster Ait.). For Ecol Manage 241:1–13

    Article  Google Scholar 

  • Fernandes P, Rego FC, Rigolot E (2011) The FIRE PARADOX project: towards science-based fire management in Europe. For Ecol Manage 261:2177–2178

    Article  Google Scholar 

  • Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. For Ecol Manage 211:97–108

    Article  Google Scholar 

  • Godinho-Ferreira P, Azevedo A, Rego FC (2005) Carta da Tipologia Florestal de Portugal Continental. Silva Lusit 13(1):1–34 (in Portuguese)

    Google Scholar 

  • González JR, Pukkala T (2007) Characterization of forest fires in Catalonia (northeast Spain). Eur J For Res 126(3):421–429

    Article  Google Scholar 

  • González JR, Palahí M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63:169–176

    Article  Google Scholar 

  • Li C, Corns IGW, Yang RC (1999) Fire frequency and size distribution under natural conditions: a new hypothesis. Landsc Ecol 14:533–542

    Article  Google Scholar 

  • Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing climate. For Ecol Manage 259:685–697

    Article  Google Scholar 

  • Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the eastern Iberian Peninsula. Landsc Ecol 17:745–759

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Oliveres J, Piñol J, Lloret F (2010) Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For Ecol Manage 259:2366–2374

    Article  Google Scholar 

  • MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez Lazpita J, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manage 59:47–69

    Article  Google Scholar 

  • Manly B, McDonald LL, Thomas DL (1993) Resource selection by animals: statistical design and analysis for field studies. Chapman and Hall, London

    Book  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    Article  CAS  Google Scholar 

  • Marques S, Borges JG, Garcia-Gonzalo J, Moreira F, Carreiras JMB, Oliveira M, Cantarinha A, Botequim B, Pereira JMC (2011) Characterization of wildfires in Portugal. Eur J For Res 130:775–784

    Article  Google Scholar 

  • Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC (eds) (2004) Recent dynamics of the Mediterranean vegetation and landscape. Wiley, New York

    Google Scholar 

  • Mercer DE, Prestemon JP (2005) Comparing production function models for wildfire risk analysis in the wildland urban interface. For Policy Econ 7:782–795

    Article  Google Scholar 

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86(10):2705–2715

    Article  Google Scholar 

  • MMA (2007) Los incendios forestales en España. Decenio 1996–2005. Área de Defensa Contra Incendios Forestales. Ministerio de Medio Ambiente, Madrid (in Spanish)

    Google Scholar 

  • Montiel C, Kraus D (eds) (2010) Best practices of fire use—prescribed burning and suppression fire programmes in selected case-study regions in Europe. Research Report 24. European Forest Institute, Joensuu, Finland

    Google Scholar 

  • Moreira F, Rego FC, Ferreira P (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567

    Article  Google Scholar 

  • Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildl Fire 18:563–574

    Article  Google Scholar 

  • Moreira F, Catry F, Rego F, Bação F (2010) Size-dependent pattern of wildfire ignitions in Portugal: when do ignitions turn into big fires? Landsc Ecol 25:1405–1417

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape and wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92:2389–2402

    Article  PubMed  Google Scholar 

  • Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3:art49. doi:10.1890/es11-00345.1

    Google Scholar 

  • Myers RL (2006) Living with fire—sustaining ecosystems and livelihoods through integrated fire management. Global Fire Initiative, The Nature Conservancy, Tallahassee, FL

    Google Scholar 

  • Nunes AN (2012) Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl Geogr 34:576–586

    Article  Google Scholar 

  • Nunes MC, Vasconcelos MJ, Pereira JM, Dasgupta N, Alldredge RJ, Rego FC (2005) Land cover types and fire in Portugal: do fires burn land cover selectively? Landsc Ecol 20:661–673

    Article  Google Scholar 

  • Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226

    Article  Google Scholar 

  • Pausas J, Keeley J (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601

    Article  Google Scholar 

  • Pezzatti GB, Bajocco S, Torriani D, Conedera M (2009) Selective burning of forest vegetation in Canton Ticino (southern Switzerland). Plant Biosyst 143:609–620

    Article  Google Scholar 

  • Preisler HK, Brillinger DR, Burgan RE, Benoit JW (2004) Probability-based models for estimation of wildfire risk. Int J Wildl Fire 13:133–142

    Article  Google Scholar 

  • Raymond CL, McKenzie D (2012) Carbon dynamics of forests in Washington, USA: 21st century projections based on climate-driven changes in fire regimes. Ecol Appl 22:1589–1611. doi:10.1890/11-1851.1

    Article  PubMed  Google Scholar 

  • Rego FC (1992) Land use changes and wildfires. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier Applied Science, London, pp 367–373

    Chapter  Google Scholar 

  • Rego F, Rigolot E, Fernandes P, Montiel C, Silva JS (2010) Towards integrated fire management. Policy brief 4. European Forest Institute, Joensuu, Finland

    Google Scholar 

  • Robinson SA (2009) Introduction: future fire activity and climate change. Glob Change Biol 15:533–544. doi:10.1111/j.1365-2486.2009.01871.x

    Article  Google Scholar 

  • Romero-Calcerrada R, Novillo CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc Ecol 23:341–354

    Article  Google Scholar 

  • Rorig ML, Ferguson SA (1999) Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J Appl Meteorol 38:1565–1575

    Article  Google Scholar 

  • Rothermel R (1983) How to predict the spread and intensity of forest and range fires. General technical report INT–143. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

    Google Scholar 

  • San-Miguel J, Camia A (2009) Forest fires at a glance: facts, figures and trends in the EU. In: Birot Y (ed) Living with wildfires: what science can tell us. EFI discussion paper 15. European Forest Institute, Joensuu, Finland, pp 11–18

    Google Scholar 

  • Santos FD, Miranda P (2006) Alterações climáticas em Portugal: cenários, impactos e medidas de adaptação. Project SIAM II, Gradiva, Lisbon (in Portuguese)

    Google Scholar 

  • Sebastián-López A, Salvador-Civil R, Gonzalo-Jiménez J, San Miguel-Ayanz J (2008) Integration of socio-economic and environmental variables for modeling long-term fire danger in Southern Europe. Eur J For Res 127:149–163

    Article  Google Scholar 

  • Silva JS, Harrison SP (2010) Humans, climate and land cover as controls on European fire regimes. In: Silva JS, Rego F, Fernandes P, Rigolot E (eds) Towards integrated fire management. Research report 23. European Forest Institute, Joensuu, Finland, pp 49–59

    Google Scholar 

  • Silva JS, Moreira F, Vaz P, Catry F, Godinho-Ferreira P (2009) Assessing the relative fire proneness of different forest types in Portugal. Plant Biosyst 143(3):597–608

    Article  Google Scholar 

  • Silva JS, Rego F, Fernandes P, Rigolot E (eds) (2010) Towards integrated fire management—outcomes of the European project Fire Paradox. Research report 23. European Forest Institute, Joensuu, Finland

    Google Scholar 

  • Silva JS, Vaz P, Moreira F, Catry F, Rego FC (2011) Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc Urban Plan 101:349–358

    Article  Google Scholar 

  • Trabaud L, Galtié J-F (1996) Effects of fire frequency on plant communities and landscape pattern in the Massif des Aspres (southern France). Landsc Ecol 11:215–224

    Article  Google Scholar 

  • Van Leeuwen W, Casady G, Neary D, Bautista S, Allosa JA, Carmel Y, Wittenberg L, Malkinson D, Orr BJ (2010) Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel. Int J Wildl Fire 19:75–93

    Article  Google Scholar 

  • Vasconcelos MJP, Silva S, Tomé M, Alvim M, Pereira JMC (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sens 67(1):73–81

    Google Scholar 

  • Vazquez A, Moreno JM (1998) Patterns of lightning- and human-caused fires in peninsular Spain. Int J Wildl Fire 8(2):103–115

    Article  Google Scholar 

  • Vazquez A, Moreno JM (2001) Spatial distribution of forest fires in Sierra de Gredos (central Spain). For Ecol Manage 147:55–65

    Article  Google Scholar 

  • Vega-Garcia C, Woodard PM, Titus SJ, Adamowicz WL, Lee BS (1995) A logit model for predicting the daily occurrence of human-caused forest fires. Int J Wildl Fire 5(2):101–111

    Article  Google Scholar 

  • Vega-Garcia C, Lee BS, Woodard PM, Titus SJ (1996) Applying neural network technology to human-caused wildfire occurrence prediction. AI Appl 10(3):9–18

    Google Scholar 

  • Verdú F, Salas J, Vega-García C (2012) A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. Int J Wildland Fire 21:498–509. doi: 10.1071/WF11100

  • Viedma O, Moreno JM, Rieiro I (2006) Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (central Spain). Environ Conserv 33:212–222

    Article  Google Scholar 

  • Vogl R (1982) Chaparral succession [Vegetation changes following fire]. General technical report PSW-58. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA

    Google Scholar 

  • Wang GG (2002) Fire severity in relation to canopy composition within burned boreal mixedwood stands. For Ecol Manage 163:85–92

    Article  Google Scholar 

  • Wittenberg L, Malkinson D (2009) Spatio-temporal perspectives of forest fires regimes in a maturing Mediterranean mixed pine landscapes. Eur J For Res 128:297–304

    Article  Google Scholar 

  • Xanthopoulos G, Calfapietra C, Fernandes P (2012) Fire hazard and flammability of European forest types. In: Moreira F, Heras J, Corona P, Arianoutsou M (eds) Post-fire management and restoration of southern European forests, vol 24, Managing forest ecosystems. Springer, New York, pp 79–92

    Chapter  Google Scholar 

  • Yang J, Healy HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For Sci 53(1):1–15

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco C. Rego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rego, F.C., Silva, J.S. (2014). Wildfires and landscape dynamics in Portugal: a regional assessment and global implications. In: Azevedo, J., Perera, A., Pinto, M. (eds) Forest Landscapes and Global Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0953-7_3

Download citation

Publish with us

Policies and ethics