Skip to main content

On Linear Hodge Newton Decomposition for Reductive Monoids

  • 779 Accesses

Part of the Fields Institute Communications book series (FIC,volume 71)


Let F be the field of fractions of a complete discrete valuation ring \(\mathfrak{o}\). Let \(\bar{\mathbf{G}}\) be an irreducible linear reductive monoid over F, such that its group G of units is split over \(\mathfrak{o}\). When \(\bar{\mathbf{G}}\) is either a connected reductive \(\mathfrak{o}\)-split linear algebraic group over F or the monoid of n × n matrices over F, Kottwitz and Viehmann had proved a relation between the Hodge point and the Newton point associated to an element \(\gamma \in \bar{\mathbf{G}}(F)\). Suppose F has characteristic zero. In [7], we had given a monoid theoretic generalization of this phenomenon. On the way, we had applied the Putcha-Renner theory of linear algebraic monoids over algebraically closed fields to study \(\bar{\mathbf{G}}(F)\) by generalizing various results for linear algebraic groups over F such as the Iwasawa, Cartan and affine Bruhat decompositions. In this article we give an exposition of these results.


  • Hodge-Newton decomposition
  • Linear algebraic monoids
  • Mazur’s inequality

Subject Classifications:

  • Primary 11F85
  • Secondary 20Mxx
  • 20G25

To Professors Putcha and Renner, with admiration

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0938-4_5
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0938-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)


  1. Brion, M.: Local structure of algebraic monoids. Mosc. Math. J. 8(4), 647–666, 846 (2008)

    Google Scholar 

  2. Kottwitz, R., Viehmann, E.: Generalized affine Springer fibers. J. Inst. Math. Jussieu 11(3), 569–601 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Putcha, M.S.: Linear Algebraic Monoids. Volume 133 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  4. Putcha, M.S.: Monoids on groups with BN-pairs. J. Algebra 120(1), 139–169 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Renner, L.E.: Linear Algebraic Monoids. Volume 134 of Encyclopaedia of Mathematical Sciences. Invariant Theory and Algebraic Transformation Groups, V. Springer, Berlin (2005)

    Google Scholar 

  6. Rivano, N.S.: Catégories Tannakiennes. Lecture Notes in Mathematics, vol. 265. Springer, Berlin (1972)

    Google Scholar 

  7. Varma, S.: On linear Hodge-Newton decomposition for reductive monoids. Semigroup Forum 85(3), 381–416 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Vinberg, E.B.: On reductive algebraic semigroups. In: Gindikin, S.G., et al. (eds.) Lie Groups and Lie Algebras: E. B. Dynkin’s Seminar. American Mathematical Society Translations Series 2, vol. 169, pp. 145–182. American Mathematical Society, Providence (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sandeep Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Varma, S. (2014). On Linear Hodge Newton Decomposition for Reductive Monoids. In: Can, M., Li, Z., Steinberg, B., Wang, Q. (eds) Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics. Fields Institute Communications, vol 71. Springer, New York, NY.

Download citation