Other Surface Imaging Methods with Electrons

  • Ernst Bauer


There are many other surface imaging methods, which are competing or complementary to cathode lens microscopy with slow electrons. Scanning probe microscopy in various imaging modes extends the resolution down to the atomic level and is frequently combined with the imaging methods discussed in this book. Here we make only a short comparison with imaging methods using reflected or emitted electrons, independent of energy and experimental setup.


Diffract Beam Reflection High Energy Electron Diffraction Reflection High Energy Electron Diffraction Pattern Indium Zinc Oxide Secondary Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frank, L., Müllerová, I., Faulian, K., Bauer, E.: The scanning low-energy electron microscope: first attainment of diffraction contrast in the scanning electron microscope. Scanning 21, 1–13 (1999)CrossRefGoogle Scholar
  2. 2.
    Frank, L., Hovorka, M., Konvalina, I., Mikmeková, Š., Müllerová, I.: Very low energy scanning electron microscopy. Nucl. Instrum. Meth. Phys. Res. A 645, 46–54 (2011)CrossRefGoogle Scholar
  3. 3.
    Müllerová, L., Hovorka, M., Mika, F., Mikmeková, E., Mikmeková, Š., Pokorná, Z., Frank, L.: Very low energy scanning electron microscopy in nanotechnology. Int. J. Nanotechnol. 9, 695–716 (2012)CrossRefGoogle Scholar
  4. 4.
    Frank, L., Hovorka, M., Mikmeková, Š., Mikmeková, E., Müllerová, I., Pokorná, Z.: Scanning electron microscopy with samples in an electric field. Materials 5, 2731–2756 (2012)CrossRefGoogle Scholar
  5. 5.
    Ichinokawa, T., Ishikawa, Y., Kemmmochi, M., Ikeda, N., Hosokawa, Y.: Low energy scanning electron microscopy combined with low energy electron diffraction. Surf. Sci. 176, 397–414 (1986)CrossRefGoogle Scholar
  6. 6.
    Ichinokawa, T., Hamaguchi, I., Hibino, M.: Surface defects of MoS2 crystals observed by scanning LEED microscopy. Surf. Sci. Lett. 231, L189–L195 (1990)CrossRefGoogle Scholar
  7. 7.
    Cowley, J.M., Albain, J.L., Hembree, G.G., Højlund-Nielsen, P.E., Koch, F.A., Landry, J.D., Shuman, H.: System for reflection electron microscopy and electron diffraction at intermediate energies. Rev. Sci. Instrum. 46, 826–829 (1975)CrossRefGoogle Scholar
  8. 8.
    von Borries, B.: Sublichtmikroskopische Auflösungen bei der Abbildung von Oberflächen im Übermikroskop. Z. Physik 116, 370–378 (1940)CrossRefGoogle Scholar
  9. 9.
    Hsu, T.: Reflection electron microscopy (REM) of vicinal surfaces of fcc metals. Ultramicroscopy 11, 167–172 (1983)CrossRefGoogle Scholar
  10. 10.
    Fert, C.: Obervation directe des surfaces métalliques par réflexion. In: Sjöstrand, F.S., Rhodin, J.A.G. (eds.) Proceedings of the Conference Electron Microscopy, Stockholm 1956, pp. 8–12. Academic, New York, NY (1957)Google Scholar
  11. 11.
    Müller, P., Métois, J.J.: Low distortion reflection electron microscopy for surface studies. Surf. Sci. 599, 187–195 (2005)CrossRefGoogle Scholar
  12. 12.
    Hsu, T.: Technique of reflection electron microscopy. Microsc. Res. Techn. 20, 318–332 (1992)CrossRefGoogle Scholar
  13. 13.
    Wang, Z.L.: Electron reflection, diffraction and imaging of bulk crystal surfaces in TEM and STEM. Rep. Prog. Phys. 56, 997–1065 (1993)CrossRefGoogle Scholar
  14. 14.
    Yagi, K.: Reflection electron microscopy: studies of surface structures and surface dynamic processes. Surf. Sci. Rep. 17, 305–362 (1993)CrossRefGoogle Scholar
  15. 15.
    Wang, Z.L.: Reflection electron microscopy and spectroscopy for surface analysis. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  16. 16.
    Latyshev, A.V.: Formation of surface patterns observed by reflection electron microscopy. In: Dehm, G., Howe, J.M., Zweck, J. (eds.) In Situ Electron Microscopy: Applications in Physics, pp. 99–122. Chemistry and Material Science, Weinheim, Wiley-VCH Verlag (2012)CrossRefGoogle Scholar
  17. 17.
    Rogilo, D.I., Fedina, L.I., Kosolobov, S.S., Ranguelov, B.S., Latyshev, A.: Critical terrace width for two-dimensional nucleation during Si growth on Si(111)-(7x7) surface. Phys. Rev. Lett. 111, 036105, 4 pages (2013)CrossRefGoogle Scholar
  18. 18.
    Cowley, J.M., Liu, J.: Contrast and resolution in REM, SEM and SAM. Surf. Sci. 298, 456–467 (1993)CrossRefGoogle Scholar
  19. 19.
    Liu, J., Cowley, J.M.: Scanning reflection electron microscopy and associated techniques for surface studies. Ultramicroscopy 48, 381–416 (1993)CrossRefGoogle Scholar
  20. 20.
    Isu, T., Watanabe, A., Hata, M., Katayama, Y.: In-situ microscopic observation of GaAs surfaces during molecular beam epitaxy and metalorganic molecular beam epitaxy by scanning microprobe reflection high energy electron diffraction. J. Cryst. Growth 100, 433–438 (1990)CrossRefGoogle Scholar
  21. 21.
    Watanabe, H., Ichikawa, M.: Development of a multifunctional surface analysis system based on a nanometer scale scanning electron beam: combination of ultrahigh vacuum-scanning electron microscopy, scanning reflection electron microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Rev. Sci. Instrum. 67, 4185–4190 (1996)CrossRefGoogle Scholar
  22. 22.
    Maruno, S., Nakahara, H., Fujita, S., Watanabe, H., Kusumi, Y., Ichikawa, M.: A combined apparatus of scanning reflection electron microscope and scanning tunneling microscope. Rev. Sci. Instrum. 68, 116–119 (1997)CrossRefGoogle Scholar
  23. 23.
    Venables, J.A.: An UHV SEM for in-situ deposition and surface studies. In: Venables, J.A. (ed.) Developments in Electron Microscopy and Analysis, pp. 23–26. Academic, London (1976)Google Scholar
  24. 24.
    Hartig, K., Janssen, A.P., Venables, J.A.: Nucleation and growth in the system Ag/Mo(100): a comparison of UHV-SEM and AES/LEED observations. Surf. Sci. 74, 69–78 (1978)CrossRefGoogle Scholar
  25. 25.
    Venables, J.A., Janssen, A.P., Akhter, P., Derrien, J., Harland, C.J.: Surface studies in a UHV field emission gun scanning electron microscope. J. Microsc. 118, 351–365 (1980)CrossRefGoogle Scholar
  26. 26.
    Homma, Y., Finnie, P., Uwaha, M.: Morphological instability of atomic steps observed on Si(111) surfaces. Surf. Sci. 492, 125–136 (2001)CrossRefGoogle Scholar
  27. 27.
    Pavlovska, A., Faulian, K., Bauer, E.: Surface roughening and surface melting in the high temperature equilibrium shape of small Pb crystals. Surf. Sci. 221, 233–243 (1989)CrossRefGoogle Scholar
  28. 28.
    Pavlovska, A., Dobrev, D., Bauer, E.: Orientation dependence of the quasi-liquid layer on tin and indium crystals. Surf. Sci. 314, 341–352 (1994)CrossRefGoogle Scholar
  29. 29.
    Pavlovska, A., Dobrev, D., Bauer, E.: Facet growth of spherical lead crystals. Surf. Sci. 326, 101–112 (1995)CrossRefGoogle Scholar
  30. 30.
    Unguris, J.: Scanning electron microscopy with polarization analysis (SEMPA) and its applications. In: de Graef, M., Zyu, Y. (eds.) Magnetic Imaging and its Applications to Materials 2001, pp. 167–193. Academic, San Diego, CA (2001)CrossRefGoogle Scholar
  31. 31.
    Allenspach, R.: Spin-polarized scanning electron microscopy. In: Zhu, Y. (ed.) Modern Techniques for Characterizing Magnetic Materials, pp. 327–359. Kluwer Academic Publishers, Boston, MA (2005)Google Scholar
  32. 32.
    Oepen, H.P., Hopster, H.: SEMPA studies of thin films, structures and exchange coupled layers. In: Hopster, H., Oepen, H.P. (eds.) Magnetic Microscopy of Nanostructures, pp. 137–167. Springer, Berlin (2005)CrossRefGoogle Scholar
  33. 33.
    Oepen, H.P., Frömter, R.: Scanning electron microscopy with polarisation analysis. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, vol. 3, pp. 1488–1509. John Wiley & Sons, Chichester (2007)Google Scholar
  34. 34.
    Frömter, R., Hankemeier, S., Oepen, H.P., Kirschner, J.: Optimizing a low-energy electron diffraction spin-polarization analyzer for imaging of magnetic surface structures. Rev. Sci. Instrum. 82, 033704, 11 pages (2011)CrossRefGoogle Scholar
  35. 35.
    Koike, K.: Spin-polarized scanning electron microscopy. Microscopy 62, 177–191 (2013)CrossRefGoogle Scholar
  36. 36.
    Trassin, M., Clarkson, J.D., Bowden, S.R., Liu, J., Heron, J., Paull, R.J., Arenholz, E., Pierce, D.T., Unguris, J.: Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys. Rev. B 87, 134426, 6 pages (2013)CrossRefGoogle Scholar
  37. 37.
    Rotermund, H.H., Ertl, G., Sesselmann, W.: Scanning photoemission microscopy of surfaces. Surf. Sci. 217, L383–L390 (1989)CrossRefGoogle Scholar
  38. 38.
    Munakata, T., Masuda, T., Ueno, N., Abdureyim, A., Sonoda, Y.: Time-resolved photoemission microspectroscopy based on fs-VUV laser light. Surf. Sci. 507–510, 434–440 (2002)CrossRefGoogle Scholar
  39. 39.
    Yamamoto, R., Yamamoto, I., Mikamori, M., Yamada, T., Miyakubo, K., Munakata, T.: Lateral inhomogeneity of unoccupied states for PbPc films. Surf. Sci. 605, 982–986 (2011)CrossRefGoogle Scholar
  40. 40.
    Günther, S., Kaulich, B., Gregoratti, L., Kiskinova, M.: Photoelectron microscopy and applications in surface and materials science. Prog. Surf. Sci. 70, 187–260 (2002)CrossRefGoogle Scholar
  41. 41.
    Barinov, A., Dudin, P., Gregoratti, L., Locatelli, A., Menteş, T.O., Niño, M.A., Kiskinova, M.: Synchrotron-based photoelectron microscopy. Nucl. Instrum. Meth. Phys. Res. A 601, 195–202 (2009)CrossRefGoogle Scholar
  42. 42.
    Bartolome, J., Maestre, D., Amati, M., Cremades, A., Piqueras, J.: Indium zinc oxide pyramids with pinholes and nanopipes. J. Phys. Chem. C 115, 8354–8360 (2011)CrossRefGoogle Scholar
  43. 43.
    Barinov, A., Gregoratti, L., Dudin, P., La Rosa, S., Kiskinova, M.: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding. Adv. Mater. 21, 1916–1920 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ernst Bauer
    • 1
  1. 1.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations