On a New Class of Integral Domains with the Portable Property

  • David E. Dobbs
  • Gabriel PicavetEmail author
  • Martine Picavet-L’Hermitte


A (commutative integral) domain R is said to be a pseudo-almost divided domain if for all P ∈ Spec(R) and uPR P , there exists a positive integer n such that u n P. Such domains are related to several known kinds of domains, such as divided domains and straight domains. It is shown that “locally pseudo-almost divided” is a portable property of domains. Hence, if T is a domain with a maximal ideal Q and D is a subring of TQ, then the pullback \(R:= T \times _{T/Q}D\) is locally pseudo-almost divided if and only if both T and D are locally pseudo-almost divided. A similar pullback transfer result is given for the “straight domain” property (which is not known to be portable) by imposing additional restrictions on the data T, Q, D.


Integral domain Pullback Portable property Straight domain Pseudo-almost divided domain PAVD APVD Almost Prüfer domain Divided domain Root closed 

Subject Classifications

[2010] Primary 13G05 Secondary 13A15 13F05 13B21 


  1. 1.
    D.D. Anderson, D.F. Anderson, Multiplicatively closed subsets of fields. Houston J. Math. 13(1), 1–11 (1987)zbMATHMathSciNetGoogle Scholar
  2. 2.
    D.D. Anderson, M. Zafrullah, Almost Bezout domains. J. Algebra 142(2), 285–309 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D.F. Anderson, D.E. Dobbs, Pairs of rings with the same prime ideals. Can. J. Math. 32(2), 362–384 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    D.F. Anderson, J. Park, Rooty and root closed domains. In: Advances in Commutative Ring Theory. Lecture Notes Pure Applied Mathematics, vol. 205 (Dekker, New York, 1999), pp. 87–99Google Scholar
  5. 5.
    M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, 1969)zbMATHGoogle Scholar
  6. 6.
    A. Badawi, On pseudo-almost valuation domains. Comm. Algebra 35(4), 1167–1181 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. Badawi, D.E. Dobbs, On locally divided rings and going down rings. Comm. Algebra 29(7), 2805–2825 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Badawi, E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains. Comm. Algebra 30(4), 1591–1606 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    D.E. Dobbs, On going-down for simple overrings, II. Comm. Algebra 1, 439–458 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    D.E. Dobbs, Divided rings and going-down. Pacific J. Math. 67(2), 353–363 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    D.E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains. Houston J. Math. 4(4), 551–567 (1978)zbMATHMathSciNetGoogle Scholar
  12. 12.
    D.E. Dobbs, On locally divided integral domains and CPI-overrings. Int J. Math. Math. Sci. 4(1), 119–135 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D.E. Dobbs, A note on strong locally divided domains. Tsukuba J. Math. 15(1), 215–217 (1991)zbMATHMathSciNetGoogle Scholar
  14. 14.
    D.E. Dobbs, On Henselian pullbacks. In: Factorization in Integral Domains. Lecture Notes Pure Applied Mathematics, vol. 189 (Dekker, New York, 1997), pp. 317–326Google Scholar
  15. 15.
    D.E. Dobbs, Pseudo-almost valuation domains are quasi-local going-down domains, but not conversely. Rend. Circ. Mat. Palermo 57(1), 119–124 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    D.E. Dobbs, When is a pullback a locally divided domain? Houston J. Math. 35(2), 341–351 (2009)zbMATHMathSciNetGoogle Scholar
  17. 17.
    D.E. Dobbs, G. Picavet, Straight rings. Comm. Algebra 37(3), 757–793 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    D.E. Dobbs, G. Picavet, Straight rings, II. In: Commutative Algebra and Applications (De Gruyter, Berlin, 2009), pp. 183–205Google Scholar
  19. 19.
    D.E. Dobbs, G. Picavet, On almost-divided domains. Rend. Circ. Mat. Palermo 58(2), 199–210 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    D.E. Dobbs, J. Shapiro, Almost integrally closed domains. Comm. Algebra 32(9), 3627–3639 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    D.E. Dobbs, M. Fontana, J.A. Huckaba, I.J. Papick, Strong ring extensions and pseudo-valuation domains. Houston J. Math. 8(2), 167–184 (1982)zbMATHMathSciNetGoogle Scholar
  22. 22.
    M. Fontana, Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. 123, 331–355 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    J.R. Hedstrom, E.G. Houston, Pseudo-valuation domains. Pacific J. Math. 75(1), 137–147 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    D.L. McQuillan, On prime ideals in ring extensions. Arch. Math. 33(2), 121–126 (1979/1980)Google Scholar
  25. 25.
    A. Mimouni, Prüfer-like conditions and pullbacks. J. Algebra 279(2), 685–693 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David E. Dobbs
    • 1
  • Gabriel Picavet
    • 2
    Email author
  • Martine Picavet-L’Hermitte
    • 2
  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  2. 2.Laboratoire de MathématiquesUniversité Blaise Pascal, UMR6620 CNRS, Les CézeauxAubière CedexFrance

Personalised recommendations