Commutative Algebra

pp 113-117


On Boolean Subrings of Rings

  • Ivan ChajdaAffiliated withDepartment of Algebra and Geometry, Palacký University Olomouc
  • , Günther EigenthalerAffiliated withInstitut für Diskrete Mathematik und Geometrie, Technische Universität Wien Email author 

* Final gross prices may vary according to local VAT.

Get Access


We determine Boolean subrings of commutative unitary rings satisfying the identity \(x^{p+k} = x^{p}\) for some integer \(p \geq 1\) where k = 2 s or \(k = 2^{s} - 1\).


Boolean ring Commutative unitary ring Characteristic 2 Subring

MS Classification:

06E20 16R50 16B70