Skip to main content

Quasi-complete Semilocal Rings and Modules

  • Chapter
  • First Online:
Book cover Commutative Algebra

Abstract

Let R be a (commutative Noetherian) semilocal ring with Jacobon radical J. Chevalley has shown that if R is complete, then R satisfies the following condition: given any descending chain of ideals \(\left \{A_{n}\right \}_{n=1}^{\infty }\) with \(\bigcap \nolimits _{n=1}^{\infty }A_{n} = 0\), for each positive integer k there exists an s k with \(A_{s_{k}} \subseteq J^{k}\). A finitely generated R-module M is said to be (weakly) quasi-complete if for any descending chain \(\left \{A_{n}\right \}_{n=1}^{\infty }\) of R-submodules of M (with \(\bigcap \nolimits _{n=1}^{\infty }A_{n} = 0\)) and k ≥ 1, there exists an s k with \(A_{s_{k}} \subseteq (\bigcap \nolimits _{n=1}^{\infty }A_{n}) + J^{k}M\). An easy modification of Chevalley’s proof shows that a finitely generated R-module over a complete semilocal ring is quasi-complete. However, the converse is false as any DVR is quasi-complete. In this paper we survey known results about (weakly) quasi-complete rings and modules and prove some new results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.D. Anderson, Multiplication ideals, multiplication rings, and the ring \(R\left (X\right )\). Canad. J. Math. 27, 760–768 (1976)

    Article  Google Scholar 

  2. D.D. Anderson, The existence of dual modules. Proc. Am. Math. Soc. 55, 258–260 (1976)

    Article  MATH  Google Scholar 

  3. D.D. Anderson, M. Axtell, S.J. Forman, J. Stickles, When are associates unit multiples? Rocky Mount. J. Math. 34, 811–823 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Barnard, Multiplication modules. J. Algebra 71, 174–178 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Bourbaki, Commutative Algebra (Addison-Wesley Publishing Company, Reading, 1972)

    MATH  Google Scholar 

  6. C. Chevalley, On the theory of local rings. Ann. Math. 44, 690–708 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  7. R.P. Dilworth, Abstract commutative ideal theory. Pacific J. Math. 12, 481–498 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. E.W. Johnson, A note on quasi-complete local rings. Coll. Math. 21, 197–198 (1970)

    MATH  Google Scholar 

  9. E.W. Johnson, Modules: duals and principally generated fake duals. Algebra Universalis 24, 111–119 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. E.W. Johnson, J.A. Johnson, The Hausdorff completion of the space of closed subsets of a module. Canad. Math. Bull. 38, 325–329 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. J.A. Johnson, a-adic completions of Noetherian lattice modules. Fund. Math. 66, 347–373 (1970)

    Google Scholar 

  12. J.A. Johnson, Semi-local lattices. Fund. Math. 90, 11–15 (1975)

    MATH  Google Scholar 

  13. J.A. Johnson, Quasi-complete ideal lattices. Coll. Math. 33, 59–62 (1975)

    MATH  Google Scholar 

  14. J.A. Johnson, Completeness in semilocal ideal lattices. Czechoslovak Math. J. 27, 378–387 (1977)

    MathSciNet  Google Scholar 

  15. J.A. Johnson, Quasi-completeness in local rings. Math. Japon. 22, 183–184 (1977)

    MATH  MathSciNet  Google Scholar 

  16. C.-P. Lu, Quasi-complete modules. Indiana Univ. Math. J. 29, 277–286 (1980)

    Article  MATH  Google Scholar 

  17. M. Nagata, Local Rings, Interscience Tract in Pure and Applied Mathematics, vol. 13 (Interscience, New York, 1962)

    Google Scholar 

  18. D.G. Northcott, Ideal Theory (Cambridge University Press, Cambridge, 1953)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, D.D. (2014). Quasi-complete Semilocal Rings and Modules. In: Fontana, M., Frisch, S., Glaz, S. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0925-4_2

Download citation

Publish with us

Policies and ethics