Weak Global Dimension of Prüfer-Like Rings



In 1969, Osofsky proved that a chained ring (i.e., local arithmetical ring) with zero divisors has infinite weak global dimension; that is, the weak global dimension of an arithmetical ring is 0, 1, or . In 2007, Bazzoni and Glaz studied the homological aspects of Prüfer-like rings, with a focus on Gaussian rings. They proved that Osofsky’s aforementioned result is valid in the context of coherent Gaussian rings (and, more generally, in coherent Prüfer rings). They closed their paper with a conjecture sustaining that “the weak global dimension of a Gaussian ring is 0, 1, or .” In 2010, the authors of Bakkari et al. (J. Pure Appl. Algebra 214:53–60, 2010) provided an example of a Gaussian ring which is neither arithmetical nor coherent and has an infinite weak global dimension. In 2011, the authors of Abuihlail et al. (J. Pure Appl. Algebra 215:2504–2511, 2011) introduced and investigated the new class of fqp-rings which stands strictly between the two classes of arithmetical rings and Gaussian rings. Then, they proved the Bazzoni-Glaz conjecture for fqp-rings. This paper surveys a few recent works in the literature on the weak global dimension of Prüfer-like rings making this topic accessible and appealing to a broad audience. As a prelude to this, the first section of this paper provides full details for Osofsky’s proof of the existence of a module with infinite projective dimension on a chained ring. Numerous examples—arising as trivial ring extensions—are provided to illustrate the concepts and results involved in this paper.


Weak global dimension Arithmetical ring fqp-ring Gaussian ring Prüfer ring Semihereditary ring Quasi-projective module Trivial extension 

Mathematics Subject Classification

13F05 13B05 13C13 16D40 16B50 


  1. 1.
    J. Abuihlail, M. Jarrar, S. Kabbaj, Commutative rings in which every finitely generated ideal is quasi-projective. J. Pure Appl. Algebra 215, 2504–2511 (2011)CrossRefMathSciNetGoogle Scholar
  2. 2.
    M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra (Westview Press, New York, 1969)zbMATHGoogle Scholar
  3. 3.
    C. Bakkari, S. Kabbaj, N. Mahdou, Trivial extensions defined by Prüfer conditions. J. Pure Appl. Algebra 214, 53–60 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    S. Bazzoni, S. Glaz, Prüfer Rings, Multiplicative Ideal Theory in Commutative Algebra (Springer, New York, 2006), pp. 263–277Google Scholar
  5. 5.
    S. Bazzoni, S. Glaz, Gaussian properties of total rings of quotients. J. Algebra 310, 180–193 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    N. Bourbaki, Commutative Algebra, Chapters 1–7. (Springer, Berlin, 1998)zbMATHGoogle Scholar
  7. 7.
    H.S. Butts, W. Smith, Prüfer rings. Math. Z. 95, 196–211 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    H. Cartan, S. Eilenberg, Homological Algebra (Princeton University Press, Princeton, 1956)zbMATHGoogle Scholar
  9. 9.
    G. Donadze, V.Z. Thomas, On a conjecture on the weak global dimension of Gaussian rings. arXiv:1107.0440v1 (2011)Google Scholar
  10. 10.
    G. Donadze, V.Z. Thomas, Bazzoni-Glaz conjecture. arXiv:1203.4072v1 (2012)Google Scholar
  11. 11.
    L. Fuchs, Über die Ideale Arithmetischer Ringe. Comment. Math. Helv. 23, 334–341 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    K.R. Fuller, D.A. Hill, On quasi-projective modules via relative projectivity. Arch. Math. (Basel) 21, 369–373 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    S. Glaz, Commutative Coherent Rings. Lecture Notes in Mathematics, vol. 1371 (Springer, Berlin, 1989)Google Scholar
  14. 14.
    S. Glaz, Prüfer Conditions in Rings with Zero-Divisors. Series of Lectures in Pure and Applied Mathematics, vol. 241 (CRC Press, Boca Raton, 2005), pp. 272–282Google Scholar
  15. 15.
    S. Glaz, The weak dimension of Gaussian rings. Proc. Am. Math. Soc. 133(9), 2507–2513 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Griffin, Prüfer rings with zero-divisors. J. Reine Angew. Math. 239/240, 55–67 (1969)Google Scholar
  17. 17.
    J.A. Huckaba, Commutative Rings with Zero-Divisors (Dekker, New York, 1988)zbMATHGoogle Scholar
  18. 18.
    C.U. Jensen, Arithmetical rings. Acta Math. Hungar. 17, 115–123 (1966)CrossRefzbMATHGoogle Scholar
  19. 19.
    S. Lang, Algebra, Graduate Texts in Mathematics (Springer, New York, 2002)Google Scholar
  20. 20.
    S. Kabbaj, N. Mahdou, Trivial extensions defined by coherent-like conditions. Comm. Algebra 32(10), 3937–3953 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    A. Koehler, Rings for which every cyclic module is quasi-projective. Math. Ann. 189, 311–316 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    B. Osofsky, Global dimension of commutative rings with linearly ordered ideals. J. London Math. Soc. 44, 183–185 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    J.J. Rotman, An Introduction to Homological Algebra (Academic, New York, 1979)zbMATHGoogle Scholar
  24. 24.
    S. Singh, A. Mohammad, Rings in which every finitely generated left ideal is quasi-projective. J. Indian Math. Soc. 40(1–4), 195–205 (1976)zbMATHMathSciNetGoogle Scholar
  25. 25.
    H. Tsang, Gauss’s lemma, Ph.D. thesis, University of Chicago, Chicago, 1965Google Scholar
  26. 26.
    A. Tuganbaev, Quasi-projective modules with the finite exchange property. Communications of the Moscow Mathematical Society. Russian Math. Surveys 54(2), 459-460 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    W.V. Vasconcelos, The Rings of Dimension Two. Lecture Notes in Pure and Applied Mathematics, vol. 22 (Dekker, New York, 1976)Google Scholar
  28. 28.
    R. Wisbauer, Local-global results for modules over algebras and Azumaya rings. J. Algebra 135, 440–455 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    R. Wisbauer, Modules and Algebras: Bimodule Structure and Group Actions on Algebras (Longman, Harlow, 1996)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsKFUPMDhahranSaudi Arabia

Personalised recommendations