On Monoids and Domains Whose Monadic Submonoids Are Krull



A submonoid S of a given monoid H is called monadic if it is a divisor-closed submonoid of H generated by one element (i.e., there is some (non-zero) bH such that S is the smallest divisor-closed submonoid of H such that bS). In this paper we study monoids and domains whose monadic submonoids are Krull monoids. These monoids resp. domains are called monadically Krull. Every Krull monoid is a monadically Krull monoid, but the converse is not true. We provide several types of counterexamples and present a few characterizations for monadically Krull monoids. Furthermore, we show that rings of integer-valued polynomials over factorial domains are monadically Krull. Finally, we investigate the connections between monadically Krull monoids and generalizations of SP-domains.


Monadically Integer-valued Krull monoid Mori set SP-domain 

2000 Mathematics Subject Classification.

13A15 13F05 20M11 20M12 



We want to thank A. Geroldinger, F. Halter-Koch, F. Kainrath and the referee for their comments and suggestions. This work was supported by the Austrian Science Fund FWF, Project Number P21576-N18.


  1. 1.
    D.D. Anderson, B. Mullins, Finite factorization domains. Proc. Am. Math. Soc. 124, 389–396 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    D.D. Anderson, D.F. Anderson, M. Zafrullah, Factorization in integral domains. J. Pure Appl. Algebra 69, 1–19 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    J.T. Arnold, R. Matsuda, An almost Krull domain with divisorial height one primes. Canad. Math. Bull. 29, 50–53 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    N.R. Baeth, A. Geroldinger, Monoids of Modules and Arithmetic of Direct-Sum Decompositions. Pacific J. Math. (to appear)Google Scholar
  5. 5.
    N.R. Baeth, R. Wiegand, Factorization theory and decompositions of modules. Am. Math. Monthly 120, 3–34 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    N.R. Baeth, A. Geroldinger, D.J. Grynkiewicz, D. Smertnig, A Semigroup-Theoretical View of Direct-Sum Decompositions and Associated Combinatorial Problems. J. Algebra Appl. (to appear)Google Scholar
  7. 7.
    H.S. Butts, R.W. Yeagy, Finite bases for integral closures. J. Reine Angew. Math. 282, 114–125 (1976)zbMATHMathSciNetGoogle Scholar
  8. 8.
    P.J. Cahen, J.L. Chabert, Integer-Valued Polynomials. Mathematical Surveys and Monographs, vol. 48 (American Mathematical Society, Providence, 1997)Google Scholar
  9. 9.
    J. Coykendall, P. Malcolmson, F. Okoh, On fragility of generalizations of factoriality. Comm. Algebra 41, 3355–3375 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    P. Etingof, P. Malcolmson, F. Okoh, Root extensions and factorization in affine domains. Canad. Math. Bull. 53, 247–255 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Facchini, Direct sum decompositions of modules, semilocal endomorphism rings, and Krull monoids. J. Algebra 256, 280–307 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Facchini, Direct-sum decompositions of modules with semilocal endomorphism rings. Bull. Math. Sci. 2, 225–279 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Facchini, R. Wiegand, Direct-sum decompositions of modules with semilocal endomorphism rings. J. Algebra 274, 689–707 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    S. Frisch, A construction of integer-valued polynomials with prescribed sets of lengths of factorizations. Monatsh. Math. 171, 341–350 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics (Chapman and Hall/CRC, Boca Raton, 2006)CrossRefGoogle Scholar
  16. 16.
    A. Geroldinger, F. Halter-Koch, W. Hassler, F. Kainrath, Finitary monoids. Semigroup Forum 67, 1–21 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    R. Gilmer, Commutative Semigroup Rings (University of Chicago Press, Chicago, 1984)zbMATHGoogle Scholar
  18. 18.
    R. Gilmer, Multiplicative Ideal Theory. Queen’s Papers in Pure and Applied Mathematics, vol. 90 (Queen’s University, Kingston, 1992)Google Scholar
  19. 19.
    R. Gilmer, W.J. Heinzer, Overrings of Prüfer domains. II. J. Algebra 7, 281–302 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    A. Grams, Atomic rings and the ascending chain condition for principal ideals. Proc. Cambridge Philos. Soc. 75, 321–329 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    A. Grams, H. Warner, Irreducible divisors in domains of finite character. Duke Math. J. 42, 271–284 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory (Marcel, New York, 1998)Google Scholar
  23. 23.
    W. Hassler, Arithmetic of weakly Krull domains. Comm. Algebra 32, 955–968 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    P. Malcolmson, F. Okoh, A class of integral domains between factorial domains and IDF-domains. Houston J. Math. 32, 399–421 (2006)zbMATHMathSciNetGoogle Scholar
  25. 25.
    P. Malcolmson, F. Okoh, Factorization in subalgebras of the polynomial algebra. Houston J. Math. 35, 991–1012 (2009)zbMATHMathSciNetGoogle Scholar
  26. 26.
    P. Malcolmson, F. Okoh, Polynomial extensions of IDF-domains and of IDPF-domains. Proc. Am. Math. Soc. 137, 431–437 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    B. Olberding, Factorization into radical ideals, in Arithmetical Properties of Commutative Rings and Monoids. Lecture Notes in Pure and Applied Mathematics, vol. 241 (Chapman and Hall/CRC, Boca Raton, 2005), pp. 363–377Google Scholar
  28. 28.
    E.M. Pirtle, Families of valuations and semigroups of fractionary ideal classes. Trans. Am. Math. Soc. 144, 427–439 (1969)zbMATHMathSciNetGoogle Scholar
  29. 29.
    A. Reinhart, Radical factorial monoids and domains. Ann. Sci. Math. Québec 36, 193–229 (2012)zbMATHMathSciNetGoogle Scholar
  30. 30.
    A. Reinhart, On integral domains that are C-monoids. Houston J. Math. 39, 1095–1116 (2013)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut für Mathematik und wissenschaftliches RechnenKarl-Franzens-UniversitätGrazAustria

Personalised recommendations