Stable Homotopy Theory, Formal Group Laws, and Integer-Valued Polynomials

Chapter

Abstract

In this survey we describe some ways in which algebras of integer-valued polynomials arise in stable homotopy theory and in the study of formal group laws. For several generalized homology theories certain values of the theories have a natural description as such algebras and since these values are the ones arising in the construction of the Adams-Novikov spectral sequence for computing stable homotopy groups these algebras and their homological properties are of considerable interest.

Keywords

Integer-valued polynomial Stable homotopy theory Formal group law Hopf algebroid Adams-Novikov spectral sequence 

MSC(2010) classification:

[2010]16S36 (13F20,11C08) 

References

  1. 1.
    J.F. Adams, Stable Homotopy and Generalised Homology Chicago Lectures in Mathematics, (University of Chicago Press, Chicago and London, 1974)Google Scholar
  2. 2.
    J.F. Adams, F. Clarke, Stable operations on complex K-theory, Illinois J. Math 21, 826–829 (1977)MATHMathSciNetGoogle Scholar
  3. 3.
    J.F. Adams, A.S. Harris, R.M. Switzer, Hopf algebras of cooperations for real and complex K-theory. Proc. London Math. Soc. 23(3), 385–408 (1971)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    S. Araki, Typical Formal Groups in Complex Cobordism and K-Theory, Lectures in Mathematics (Kyoto University, Kinokuniya Bookstore, Tokyo, 1973)Google Scholar
  5. 5.
    M. Atiyah, F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds. Bul. Amer. Math. Soc. 65, 276–281 (1959)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    M. Atiyah, F. Hirzebruch, Vector bundles and homogeneous spaces. Proc. Sympos. Pure Math. Amer. Math. Soc. 3, 7–38 (1961)CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Baker, F. Clarke, N. Ray, L. Schwartz, On the Kummer congruences and the stable homotopy of BU. Trans. Amer. Math. Soc. 316, 385–432 (1989)Google Scholar
  8. 8.
    S. Bochner, Formal Lie groups. Ann. Math. 47, 192–201 (1946)MATHMathSciNetGoogle Scholar
  9. 9.
    E.H. Brown, Cohomology theories. Ann. Math. 75, 467–484 (1962)MATHGoogle Scholar
  10. 10.
    E.H. Brown, F. Peterson, A spectrum whose Zp cohomology is the algebra of reduced pth powers. Topology 5, 149–154 (1966)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    P.-J. Cahen, J.-L. Chabert, Integer Valued Polynomials. (American Mathematic Society, Providence, R.I., 1997)Google Scholar
  12. 12.
    F. Clarke, On the Determination of K (K) Using the Conner-Floyd Isomorphism, preprint, Swansea (1972)Google Scholar
  13. 13.
    F. Clarke, Self Maps of BU. Math. Proc. Cam. Phil. Soc. 89, 491–506 (1981)Google Scholar
  14. 14.
    F. Clarke, M. Crossley, S. Whitehouse, Bases for Co-operations in K-Theory. K-Theory 23, 237–250 (2001)Google Scholar
  15. 15.
    F. Clarke, K. Johnson, Cooperations in Elliptic Homology. LMS Lect. Notes 176, 131–143 (1992)MathSciNetGoogle Scholar
  16. 16.
    F. Clarke, K. Johnson, On the Classifying Ring for Abel Formal Group Laws, J. Pure Appl. Alg. 213, 1290–1298 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    P.E. Conner, E.E. Floyd, The Relation of Cobordism to K-Theories, Lecture Notes in Mathematics, vol. 28 (Springer, Berlin/New York, 1966)Google Scholar
  18. 18.
    S. Eilenberg, N. Steenrod, Axiomatic approach to homology theory. Proc. Nat. Acad. Sci. U.S.A. 31, 117–120 (1945)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology (Princeton University Press, Princeton, N.J., 1952)MATHGoogle Scholar
  20. 20.
    M. Hazewinkel, Formal Groups and Applications (Academic Press, New York, 1973)Google Scholar
  21. 21.
    H. Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104, 637–665 (1931)CrossRefMathSciNetGoogle Scholar
  22. 22.
    D.C. Johnson, W.S. Wilson, BP operations and Morava’s extraordinary K-theories, Math. Z. 144, 55–75 (1975)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    K. Johnson, The action of the stable operations of complex K-theory on coefficient groups. Illinois J. Math. 28, 57–63 (1984)MATHMathSciNetGoogle Scholar
  24. 24.
    K. Johnson, On the Structure of the Hopf Algebroid E(n) E(n). Amer. J. Math 122, 223–234 (2000)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    K. Johnson,, Numerical polynomials and endomorphisms of formal group laws. London Math. Soc. Lect. Notes 342, 204–213 (2007)Google Scholar
  26. 26.
    K. Johnson, The invariant subalgebra and anti-invariant submodule of K 0 K. Jour. K-theory 1, 123–145 (2008)Google Scholar
  27. 27.
    P. Landweber, Homological properties of comodules over MU (MU) and BP (BP). Amer. J. Math. 98, 591–610 (1976)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    G. Laures, The Topological q-expansion Principle. Topology 38, 387–425 (1999)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    M. Lazard, Sur les groupes de Lie formels á un paramétre. Bull. Soc. Math. France 83, 251–274 (1955)MATHMathSciNetGoogle Scholar
  30. 30.
    D. Quillen, On the formal group laws of unoriented and complex cobordism. Bull. Amer. Math. Soc. 75, 1293–1298 (1969)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    D. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, (Academic Press, New York, NY, 1986)MATHGoogle Scholar
  32. 32.
    L. Schwartz, Opérations d’Adams en K-homologie et applications. Bull. Soc. Math. France 109, 237–257 (1981)MATHMathSciNetGoogle Scholar
  33. 33.
    R. Thom, Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsDalhousie UniversityHalifaxCanada

Personalised recommendations