The Development of Non-Noetherian Grade and Its Applications



Hochster and Barger were the first to introduce notions of grade for non-Noetherian rings. Their work laid the foundation for Alfonsi’s work which unified and generalized these earlier definitions. The various notions of grade have played an important role in the development of the theory of coherent rings. This paper looks at the historical development of non-Noetherian grade, as well as its applications.


Non-Noetherian ring Coherent ring Grade Depth Polynomial grade 

Mathematics Subject Classification (2010):

13-02 13C15 13D05 



The author would like to thank the referee for their thorough reading and helpful comments to improve this paper. In addition, the author thanks Sarah Glaz for her suggestion regarding the need for the current work, as well as for her assistance and continued encouragement.


  1. 1.
    B. Alfonsi, Grade non-noethérien, Comm. Algebra 9(8), 811–840 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, vol. 94 (American Mathematical Society, Providence, R.I., 1969)Google Scholar
  3. 3.
    M. Auslander, D.A. Buchsbaum, Homological dimension in local rings. Trans. Amer. Math. Soc. 85, 390–405 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    S.F. Barger, A theory of grade for commutative rings. Proc. Amer. Math. Soc. 36, 365–368 (1972)CrossRefMathSciNetGoogle Scholar
  5. 5.
    D.A. Buchsbaum, D. Eisenbud, What makes a complex exact?. J. Algebra 25, 259–268 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Sarah Glaz, Commutative coherent rings: historical perspective and current developments. Nieuw Arch. Wisk. (4) 10(1–2), 37–56 (1992)Google Scholar
  7. 7.
    T.D. Hamilton, T. Marley, Non-Noetherian Cohen-Macaulay rings. J. Algebra 307(1), 343–360 (2007)zbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Hochster,Grade-sensitive modules and perfect modules. Proc. London Math. Soc. (3) 29, 55–76 (1974)Google Scholar
  9. 9.
    L. Hummel, T. Marley, The Auslander-Bridger formula and the Gorenstein property for coherent rings. J. Comm. Alg. 1 (2009)Google Scholar
  10. 10.
    J. Iroz, D.E. Rush, Associated prime ideals in non-Noetherian rings. Canad. J. Math. 36(2), 344–360 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    P. Jaffard, Théorie de la Dimension Dans les Anneaux de Polynomes, Mémorial Science Mathematics Fasc. vol. 146 (Gauthier-Villars, Paris, 1960)Google Scholar
  12. 12.
    D. Lazard, Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)zbMATHMathSciNetGoogle Scholar
  13. 13.
    K.P. McDowell, Pseudo-Noetherian rings. Canad. Math. Bull. 19(1), 77–84 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    K.P. Mcdowell, Commutative Coherent Rings, ProQuest LLC, Ann Arbor, MI, 1974, Thesis (Ph.D.)–McMaster University (Canada)Google Scholar
  15. 15.
    A. Mohsen, M. Tousi, On the notion of Cohen-Macaulayness for non-Noetherian rings. J. Algebra 322, (2009)Google Scholar
  16. 16.
    D.G. Northcott, Finite Free Resolutions, Cambridge Tracts in Mathematics, vol. 71 (Cambridge University Press, Cambridge, 1976)Google Scholar
  17. 17.
    D.G. Northcott, Projective ideals and MacRae’s invariant. J. London Math. Soc. (2) 24(2), 211–226 (1981)Google Scholar
  18. 18.
    D. Rees, A theorem of homological algebra. Proc. Cambridge Philos. Soc. 52, 605–610 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    D. Rees, The grade of an ideal or module. Proc. Cambridge Philos. Soc. 53, 28–42 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Sakaguchi, A note on the polynomial grade and the valuative dimension. Hiroshima Math. J. 8(2), 327–333 (1978)zbMATHMathSciNetGoogle Scholar
  21. 21.
    P. Schenzel, Proregular sequences, local cohomology, and completion. Math. Scand. 92(2), 161–180 (2003)zbMATHMathSciNetGoogle Scholar
  22. 22.
    B. Stenström, Coherent rings and FP-injective modules. J. London Math. Soc. 2(2), 323–329 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    J.R. Strooker, Homological Questions in Local Algebra, London Mathematical Society Lecture Note Series, vol. 145 (Cambridge University Press, Cambridge, 1990)Google Scholar
  24. 24.
    W.V. Vasconcelos, Annihilators of modules with a finite free resolution. Proc. Amer. Math. Soc. 29, 440–442 (1971)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of IndianapolisIndianapolisUSA

Personalised recommendations