Non-Line-Of-Sight (NLOS) Ultraviolet And Indoor Free-Space Optical (FSO) Communications

  • Arun K. Majumdar
Part of the Springer Series in Optical Sciences book series (SSOS, volume 186)


This chapter presents a new concept for exploiting non-line-of-sight (NLOS) free-space optical (FSO) communication. NLOS configuration can be achieved using scattering as a vehicle for a viable link, or using multipath propagation as in an indoor optical communication link. The chapter discusses the promising enabling technology of ultraviolet (UV) NLOS optical wireless communication. The chapter describes a stochastic NLOS UV communication channel model using a Monte Carlo simulation method based on photon tracing starting with key system components. An overview of the state-of-the-art devices such as deep UV light-emitting diodes (LEDs) and solid state solar-blind deep UV avalanche photodiodes (APDs), solar blind photomultipliers (PMTs), filters which are well-suited for NLOS UV FSO communication is given. Most recent experimental results with various modulation formats described in this chapter supports the potential promise of this technology for NLOS operation. Extending this enabling technology to design NLOS FSO-based distributed sensor network in multi-scattering channel is also discussed. The possibility of NLOS quantum communication using UV photons is also pointed out. This chapter introduces another related NLOS FSO link for indoor inter-device connectivity using near infrared light. Possible configurations for indoor optical wireless systems include: (i) directed beam infrared (DBIR), (ii) diffuse infrared (DFIR), and (iii) quasi-diffuse infrared (QDIR). Some of the discussions in this chapter include propagation modeling (with multipath response), different modulation techniques suitable for different configurations, multi-access techniques, and broadband communication links for multiple sensor networks. The impact of this new technology on future FSO links and various applications is addressed.


Impulse Response Path Loss Scintillation Index Visible Light Communication Dark Count Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. M. Riley, D. T. Moriarty, J. A. Maynard, Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks, Proc. SPIE, 5611, pp. 244–254 (2004)CrossRefADSGoogle Scholar
  2. 2.
    International Electrotechnical Commission (IEC), IEC 60825−12: Safety of Laser Products- Part 12: Safety of Free Space Optical Communication Systems Used for Transmission of Information, (2005)Google Scholar
  3. 3.
    International Commission on Non-Ionizing Radiation Protection (ICNIRP): Guidance on Limits of Exposure to Ultraviolet Radiation of Wavelengths between 180 nm and 400 nm (Incoherent Optical Radiation), initially published in Health Physics 49:331–340, 1985; amended in Health Physics 56:971–972, 1989; reconfirmed by ICNIRP in Health Physics 71:978, 1996; republished in Health Physics 87(2): 171–186 (2004)Google Scholar
  4. 4.
    G. Chen, F. Abou-Gelala, Z. Xu, B. M. Sadler, Experimental evaluation of LED-based solar blind NLOS communication links, Optics Express, 16(19), 15059–15068 (2008)CrossRefADSGoogle Scholar
  5. 5.
    M. R. Luettgen, J.H. Shapiro, D. M. Riley, Non-line-of-sight single-scatter propagation model, J. Opt. Soc. Am A, 8(12), 1964–1972 (1991)CrossRefADSGoogle Scholar
  6. 6.
    H. Ding, G. Chen, A. K. Majumdar, Z. Xu, A parametric single scattering channel model for non-line-of-sight ultraviolet communications, Proc. SPIE, 7091, (2008)Google Scholar
  7. 7.
    T. Feng, F. Xiong, G. Chen, Z. Fang, Effects of atmospheric visibility in performances of non-line-sight ultraviolet communication systems, Optik 119, pp. 612–617, (2008)CrossRefADSGoogle Scholar
  8. 8.
    A.K. Majumdar, C.E. Luna, P.S. Idell, Reconstruction of probability density function of intensity fluctuations relevant to free-space laser communications through atmospheric turbulence, Proc. SPIE, 6709, pp. 1–15, (2007)Google Scholar
  9. 9.
    H. Ding, G. Chen, A.K. Majumdar, B.M. Sadler, Z. Xu, Modeling of Non-Line-of-Sight Ultraviolet Scattering Channels for Communication, IEEE Journal on Selected Areas in Communications, 27(9), 1535–1544, (2009)Google Scholar
  10. 10.
    H. Ding, G. Chen, A.K. Majumdar, B.M. Sadler, Z. Xu, Turbulence modeling for non-line-of sight ultraviolet scattering channels, Proc. SPIE, 8038, 8038OJ, (2011)ADSGoogle Scholar
  11. 11.
    N. S. Kopeika, J. Bordogna, Background noise in optical communication systems, Proc. IEEE, 58, pp. 1571–1577, (1970)CrossRefADSGoogle Scholar
  12. 12.
    J. H. Franz, V. K. Jain, Optical communication components and systems. (Narosa, India, 2002)Google Scholar
  13. 13.
    L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Press Monogr., PM 152, (2005)Google Scholar
  14. 14.
    D.J.T. Heatley, D.R. Wisely, I. Neild, P. Cochrane, Optical Wireless: The Story So Far, IEEE Commun. Mag., pp. 72–82, (1998)Google Scholar
  15. 15.
    J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, Simulation of multipath impulse response for wireless optical channels, IEEE J. Sel. Areas in Commun., 11(3), pp. 367–379, (1993)CrossRefGoogle Scholar
  16. 16.
    J.M. Kahn, J. R. Barry, Wireless infrared communications, Proc. IEEE, 85(2), pp. 265–298, (1997)CrossRefGoogle Scholar
  17. 17.
    T. Ohtsuki, Multiple-subcarrier modulation in optical wireless Communications, IEEE Commun. Mag., 41(3), pp. 74–79, (2003)CrossRefGoogle Scholar
  18. 18.
    H. Elgala, R. Mesleh, H. Haas, Indoor broadcasting via white LEDs and OFDM, IEEE Trans. Consumer Electron., 55(3), pp. 1127–1134, (2009)CrossRefGoogle Scholar
  19. 19.
    J. Armstrong, A. Lowery, Power efficient optical OFDM, Electron. Lett., 42(6), pp. 370–372, (2006)CrossRefGoogle Scholar
  20. 20.
    H. Elgala, R. Mesleh, H. Haas, Indoor optical wireless communication: Potential and state-of-the-art, IEEE Commun Mag., 49(9), pp. 56–62, (2011)CrossRefGoogle Scholar
  21. 21.
    J.B. Carruthers, S.M. Carroll, P. Kannan, Propagation modeling for indoor optical wireless communications using fast multireceiver channel estimation, IEE Proc.—Optoelectron. (2003). doi:10.1049/ip-opt:20030527,
  22. 22.
    J.B. Curruthers, P. Kannan, Iterative site-based modeling for wireless infrared channels, IEEE Trans. Antennas Propag., 50, pp. 759–765, (2002)CrossRefADSGoogle Scholar
  23. 23.
    M. Kavehrad, S. Jivkova, Indoor broadband optical wireless communications: Optical subsytems desigbns and their impact on channel characteristics, IEEE Wireless Commun., pp. 30–35, (2003)Google Scholar
  24. 24.
    Y. Tanaka et al., Indoor visible light data transmission system utilizing white LED lights, IECE Trans. Commun., E 86 -B(8), 2420–2454, (2003)Google Scholar
  25. 25.
    D. O’brien, L. Zeng, H. Le-Minh, G. Faulkner, J.W. Walewski, S. Randel, Visible light communications: challenges and possibilities, IEEE 19th international symposium on personal, indoor, and mobile radio communications, PIMRC (2008).Google Scholar
  26. 26.
    J. Vucic et al., 513 Mbit/s visible light communications link based on DMT-modulation of a white LED, J. Lightwave Tech., 28(24), pp. 3512–3518, (2010)Google Scholar
  27. 27.
    S. Rajbhandari, Z. Ghassemlooy, M. Angelova, Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization, IET Optolectron., 3(4), 169–179, (2009)CrossRefGoogle Scholar
  28. 28.
    J. Fadlullah, M. Kavehrad, Indoor high-bandwidth optical wireless links for sensor networks, J Lightwave Techn, 28(21), 3086–3094, (2010)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arun K. Majumdar
    • 1
  1. 1.RidgecrestUSA

Personalised recommendations