Skip to main content

Diagnosis of Human Trematode Infections

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 766))

Abstract

Digenetic trematodes are a major group of human parasites affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver, and intestinal parasites. Traditionally, the trematode infections have been diagnosed by parasitological methods based on the detection and the identification of the eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated due to migratory flows, international travels, international trade of foods, and changes in the alimentary habits. Although several efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In the present chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze most relevant characteristics used to identify eggs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ritchie LS (1948) An ether sedimentation technique for routine stool examinations. Bull U S Army Med Dep 8:326

    CAS  PubMed  Google Scholar 

  2. Blagg W, Schloegel EL, Mansour NS et al (1955) A new concentration technic for the demonstration of protozoa and helminth eggs in feces. Am J Trop Med Hyg 4:23–28

    CAS  PubMed  Google Scholar 

  3. Allen AVH, Ridley DS (1970) Further observations on the formol-ether concentration technique for faecal parasites. J Clin Pathol 23:545–546

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Knight WB, Hiatt RA, Cline BL et al (1976) A modification of the formol-ether concentration technique for increased sensitivity in detecting Schistosoma mansoni. Am J Trop Med Hyg 55:818–823

    Google Scholar 

  5. Ash LR, Orihel TC (1991) Parasites: a guide to laboratory procedures and identification. ASCP Press, American Society of Clinical Pathologists, Chicago

    Google Scholar 

  6. Coelho PMZ, Jurberg AD, Oliveira AA et al (2009) Use of a saline gradient for the diagnosis of schistosomiasis. Mem Inst Oswaldo Cruz 104:720–723

    PubMed  Google Scholar 

  7. Stoll NR (1923) Investigations on the control of hookworm disease. XV. An effective method of counting hookworm eggs in feces. Am J Hyg 3:59–70

    Google Scholar 

  8. Katz N, Chaves A, Pellegrino J (1972) A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14:397–400

    CAS  PubMed  Google Scholar 

  9. WHO (1991) Basic laboratory methods in medical parasitology. World Health Organization, Geneva

    Google Scholar 

  10. Ash LR, Orihel TC, Savioli L (1994) Bench aids for the diagnosis of intestinal parasites. World Health Organization, Geneva

    Google Scholar 

  11. Cringoli G (2006) FLOTAC, a novel apparatus for a multivalent faecal egg count technique. Parassitologia 48:381–384

    CAS  PubMed  Google Scholar 

  12. Cringoli G, Rinaldi L, Maurelli MP et al (2010) FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of intestinal parasites in animals and humans. Nat Protoc 5:503–515

    CAS  PubMed  Google Scholar 

  13. Utzinger J, Rinaldi L, Lohourignon LK et al (2008) FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Trans R Soc Trop Med Hyg 102:84–90

    PubMed  Google Scholar 

  14. Knopp S, Rinaldi L, Khamis IS et al (2009) A single FLOTAC is more sensitive than triplicate Kato-Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Trans R Soc Trop Med Hyg 103:347–354

    PubMed  Google Scholar 

  15. Habtamu K, Degarege A, Ye-Ebiyo Y et al (2011) Comparison of the Kato-Katz and FLOTAC techniques for the diagnosis of soil-transmitted helminth infections. Parasitol Int 60:398–402

    PubMed  Google Scholar 

  16. Glinz D, Silué KD, Knopp S et al (2010) Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Negl Trop Dis 4:e754. doi:10.1371/journal.pntd.0000754

    PubMed Central  PubMed  Google Scholar 

  17. Jeandron A, Abdyldaieva G, Usubalieva J et al (2010) Accuracy of the Kato-Katz, adhesive tape and FLOTAC techniques for helminth diagnosis among children in Kyrgyzstan. Acta Trop 116:185–192

    PubMed  Google Scholar 

  18. Jeandron A, Rinaldi L, Abdyldaieva G et al (2011) Human infections with Dicrocoelium dendriticum in Kyrgyzstan: the tip of the iceberg? J Parasitol 97:1170–1172

    PubMed  Google Scholar 

  19. Gualdieri L, Rinaldi L, Petrullo L et al (2011) Intestinal parasites in immigrants in the city of Naples (southern Italy). Acta Trop 117:196–201

    CAS  PubMed  Google Scholar 

  20. Duthaler U, Rinaldi L, Maurelli MP et al (2010) Fasciola hepatica: comparison of the sedimentation and FLOTAC techniques for the detection and quantification of faecal egg counts in rats. Exp Parasitol 126:161–166

    PubMed  Google Scholar 

  21. Cheng MG (1989) Schistosomiasis control program in the People’s Republic of China: a review. Southeast Asian J Trop Med Public Health 20:511–517

    Google Scholar 

  22. Zhou YB, Zheng HM, Jiang QW (2011) A diagnostic challenge for schistosomiasis japonica in China: consequences on praziquantel-based morbidity control. Parasit Vectors 4:194. doi:10.1186/1756-3305-4-194

    PubMed Central  PubMed  Google Scholar 

  23. Ross AGP, Sleigh AC, Li Y et al (2001) Schistosomiasis in the People’s Republic of China: prospects and challenges for the 21st century. Clin Microbiol Rev 14:270–295

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Jurberg AD, de Oliveira AA, Lenzi HL et al (2008) A new miracidia hatching device for diagnosing schistosomiasis. Mem Inst Oswaldo Cruz 103:112–114

    PubMed  Google Scholar 

  25. Teixera CF, Neuhauss E, Ben R et al (2007) Detection of Schistosoma mansoni eggs in feces through their interaction with paramagnetic beads in a magnetic field. PloS Negl Trop Dis 1(2):e73. doi:10.1371/journal.pntd.0000073

    Google Scholar 

  26. Slesak G, Inthalad S, Basy P et al (2011) Ziehl-Neelsen staining technique can diagnose paragonimiasis. PLoS Negl Trop Dis 5(5):e1048. doi:10.1371/journal.pntd.0001048

    PubMed Central  PubMed  Google Scholar 

  27. Fried B, Haseeb MA (1991) Plathyhelminthes: Aspidogastrea, Monogenea, and Digenea. In: Harrison FW, Bogitish BJ (eds) Microscopic anatomy of invertebrates, vol III, Plathyhelminthes and Nemertinea. Wiley-Liss, New York

    Google Scholar 

  28. Orihel TC, Ash LR (1995) Parasites in human tissues. American Society of Clinical Pathologists, Chicago

    Google Scholar 

  29. Meyers WM, Neafie RC, Marty AM et al (2000) Pathology of infectious diseases, vol I, Helmintiases. American Registry of Pathology, Armed Forces Institute of Pathology, Washington, DC, 530 pp

    Google Scholar 

  30. Bergquist R, Johansen MV, Utzinger J (2009) Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol 4:151–156. doi:10.1016/j.pt.2009.01.004

    Google Scholar 

  31. Johansen MV, Sithithaworn P, Bergquist R et al (2010) Towards improved diagnosis of zoonotic trematode infections in Southeast Asia. Adv Parasitol 73:171–195

    PubMed  Google Scholar 

  32. Ash LR, Orihel TC (2007) Atlas of human parasitology, 5th edn. American Society for Clinical Pathology Press, Chicago

    Google Scholar 

  33. Fried B, Graczyk TK, Tamang L (2004) Food-borne intestinal trematodiases in humans. Parasitol Res 93:159–170

    PubMed  Google Scholar 

  34. Chai JY, Darwin Murrell K, Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35:1233–1254

    PubMed  Google Scholar 

  35. Keiser J, Utzinger J (2005) Emerging foodborne trematodiasis. Emerg Infect Dis 11:1507–1514

    PubMed Central  PubMed  Google Scholar 

  36. Keiser J, Utzinger J (2009) Food-borne trematodiases. Clin Microbiol Rev 22:466–483

    PubMed Central  PubMed  Google Scholar 

  37. Mas-Coma S, Bargues MD, Valero MA (2005) Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 35:1255–1278

    CAS  PubMed  Google Scholar 

  38. Mas-Coma S, Bargues MD, Valero MA (2007) Plant-borne trematode zoonoses: fascioliasis and fasciolopsiasis. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites, world class parasites, vol 11. Springer, New York

    Google Scholar 

  39. Graczyk TK, Fried B (2007) Human waterborne trematode and protozoa infections. Adv Parasitol 64:111–160

    PubMed  Google Scholar 

  40. Sithithaworn P, Yongvanit P, Tesana S et al (2007) Liver flukes. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites, world class parasites, vol 11. Springer, New York

    Google Scholar 

  41. Keiser J, Duthaler U, Utzinger J (2010) Update on the diagnosis and treatment of food-borne trematode infections. Curr Opin Infect Dis 23:513–520

    PubMed  Google Scholar 

  42. Sripa B, Kaewkes S, Intapan PM et al (2010) Food-borne trematodiases in Southeast Asia epidemiology, pathology, clinical manifestation and control. Adv Parasitol 72:305–350

    PubMed  Google Scholar 

  43. Fürst T, Keiser J, Utzinger J (2012) Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet Infect Dis 12:210–221

    PubMed  Google Scholar 

  44. Toledo R, Esteban JG, Fried B (2012) Current status of food-borne trematode infections. Eur J Clin Microbiol Infect Dis 31:1705–1718

    CAS  PubMed  Google Scholar 

  45. Linder E, Lundin M, Thors C et al (2008) Web-based virtual microscopy for parasitology: a novel tool for education and quality assurance. PLoS Negl Trop Dis 2(10):e315. doi:10.1371/journal.pntd.0000315

    PubMed Central  PubMed  Google Scholar 

  46. Mas-Coma S, Bargues MD (1997) Human liver flukes: a review. Res Rev Parasitol 57:145–218

    Google Scholar 

  47. Mas-Coma S, Bargues MD, Marty AM et al (2000) Hepatic trematodiases. In: Meyers WM, Neafie RC, Marty AM, Wear DJ (eds) Pathology of infectious diseases, vol I, Helmintiases. American Registry of Pathology, Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  48. Quiao TQ, Zheng PM, Ma RH et al (2012) Development of a real-time PCR assay for the detection of Clonorchis sinensis DNA in gallbladder bile and stone samples from patients with cholecystolithiasis. Parasitol Res 111:1497–1503

    Google Scholar 

  49. Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79:269–281

    PubMed  Google Scholar 

  50. Lee SH, Hwang SW, Chai JY et al (1984) Comparative morphology of eggs of heterophyids and Clonorchis sinensis causing human infections in Korea. Korean J Parasitol 22:171–180

    Google Scholar 

  51. Lee JJ, Jung BK, Lim H et al (2012) Comparative morphology of minute intestinal fluke eggs that occur in human stools in the Republic of Korea. Korean J Parasitol 50:207–213

    PubMed Central  PubMed  Google Scholar 

  52. Choi BI, Han JK, Hong ST et al (2004) Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 17:540–552

    PubMed Central  PubMed  Google Scholar 

  53. Choi D, Hong ST, Lim JH et al (2004) Sonographic findings of active Clonorchis sinensis infection. J Clin Ultrasound 32:17–23

    PubMed  Google Scholar 

  54. Choi D, Hong ST (2007) Imaging diagnosis of clonorchiasis. Korean J Parasitol 45:77–85

    PubMed Central  PubMed  Google Scholar 

  55. Kim TI, Na BK, Hong SJ (2009) Functional genes and proteins of Clonorchis sinensis. Korean J Parasitol 47:S59–S68

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hong ST, Fang Y (2012) Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 61:17–24

    CAS  PubMed  Google Scholar 

  57. Huang SY, Zhao GH, Fu BQ et al (2012) Genomics and molecular genetics of Clonorchis sinensis: current status and perspectives. Parasitol Int 61:71–76

    CAS  PubMed  Google Scholar 

  58. Lee MR, Kim YJ, Kim DW et al (2012) The identification of antigenic proteins: 14-3-3 protein and propionyl-CoAcarboxylase in Clonorchis sinensis. Mol Biochem Parasitol 182:1–6

    PubMed  Google Scholar 

  59. Li Y, Hu X, Liu X et al (2012) Serological diagnosis of clonorchiasis: using a recombinant propeptide of cathepsin L proteinase from Clonorchis sinensis as a candidate antigen. Parasitol Res 110:2197–2203

    PubMed  Google Scholar 

  60. Chen M, Lu Y, Hua X et al (1994) Progress in assessment of morbidity due to Clonorchis sinensis infection: a review of recent literature. Trop Dis Bull 91:R7–R65

    Google Scholar 

  61. Mazidur Rahman SM, Choi MH, Bae YM et al (2012) Coproantigen capture ELISA for detection of Clonorchis sinensis infection in experimentally infected rats. Parasitol Int 61:203–207

    CAS  PubMed  Google Scholar 

  62. Kim YJ, Lee SM, Choi GE et al (2010) Performance of an enzyme-linked immunosorbent assay for detection of Clonorchis sinensis infestation in high- and low-risk groups. J Clin Microbiol 48:2365–2367

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Huang SY, Tang JD, Song HQ et al (2012) A specific PCR assay for the diagnosis of Clonorchis sinensis infection in humans, cats and fishes. Parasitol Int 61:187–190

    CAS  PubMed  Google Scholar 

  64. Sanpool O, Intapan PM, Thanchomnang T et al (2012) Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini eggs in human fecal samples using a duplex real-time fluorescence resonance energy transfer PCR and melting curve analysis. Parasitol Res 111:89–96

    PubMed  Google Scholar 

  65. Cai XQ, Yu HQ, Bai JS et al (2012) Development of a TaqMan based real-time PCR assay for detection of Clonorchis sinensis DNA in human stool samples and fishes. Parasitol Inter 61:183–186

    CAS  Google Scholar 

  66. Sun J, Xu J, Liang P et al (2011) Molecular identification of Clonorchis sinensis and discrimination with other opisthorchid liver fluke species using multiple ligation-depended probe amplification (MLPA). Parasit Vectors 4:98. doi:10.1186/1756-3305-4-98

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Rim HJ (1982) Opisthorchiasis. In: Hillyer GV, Hopla CE (eds) Handbook series in zoonoses, vol III, Section C: Parasite zoonoses. CRC, Bocaraton

    Google Scholar 

  68. Harinasuta T, Pungpak S, Keystone J (1993) Trematode infections. Opisthorchiasis, Clonorchiasis, Fascioliasis and Paragonimiasis. Infect Dis Clin North Am 7:699–716

    CAS  PubMed  Google Scholar 

  69. Sripa B, Kaewkes S, Sithithaworn P et al (2007) Liver fluke induces cholangiocarcinoma. PLoS Med 4:1148–1155

    Google Scholar 

  70. Mordvinov VA, Yurlova NI, Ogorodova LM et al (2012) Opisthorchis felineus and Metorchis bilis are the main agents of liver fluke infection of humans in Russia. Parasitol Int 61:25–31

    PubMed  Google Scholar 

  71. Yossepowitch O, Gotesman T, Assous M et al (2004) Opisthorchiasis from imported raw fish. Emerg Infect Dis 10:2122–2126

    PubMed Central  PubMed  Google Scholar 

  72. Armignacco O, Caterini L, Marucci G et al (2008) Human illnesses caused by Opisthorchis felineus flukes, Italy. Emerg Infect Dis 14:1902–1905

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Pozio E, Armignacco O, Ferri F et al (2013) Opisthorchis felineus an emerging infection in Italy and its implication for the European Union. Acta Trop 126:54–62

    PubMed  Google Scholar 

  74. Kaewkes S, Elkins DB, Sithithaworn P et al (1991) Comparative studies on the morphology of the eggs of Opisthorchis viverrini and Lecithodendriid trematodes. Southeast Asian J Trop Med Public Health 22:623–630

    CAS  PubMed  Google Scholar 

  75. Tesana S, Srisawanwonk T, Kaewkes S et al (1991) Egg shell morphology of the small eggs of human trematodes in Thailand. Southeast Asian J Trop Med Public Health 22:631–636

    CAS  PubMed  Google Scholar 

  76. Ditrich O, Giboda M, Scholz T et al (1992) Comparative morphology of eggs of the Haplorchiinae (Trematoda: Heterophyidae) and some other medically important heterophyid and opisthorchiid flukes. Folia Parasitol 39:123–132

    CAS  PubMed  Google Scholar 

  77. Sukontason K, Piangjai S, Sukontason K et al (1999) Potassium permanganate staining for differentiation the surface morphology of Opisthorchis viverrini, Haplorchis taichui and Phaneropsolus bonnie eggs. Southeast Asian J Trop Med Public Health 30:371–374

    CAS  PubMed  Google Scholar 

  78. Lim JH, Mairiang E, Ahn GH (2008) Biliary parasitic diseases including clonorchiasis, opisthorchiasis and fascioliasis. Abdom Imaging 33:157–165

    PubMed  Google Scholar 

  79. Mairiang E, Laha T, Bethony JM et al (2012) Ultrasonography assessment of hepatobiliary abnormalities in 3359 subjects with Opisthorchis viverrini infection in endemic areas of Thailand. Parasitol Int 61:208–211

    PubMed  Google Scholar 

  80. Upatham ES, Viyanant V (2003) Opisthorchis viverrini and opisthorchiasis: a historical review and future perspective. Acta Trop 88:171–176

    CAS  PubMed  Google Scholar 

  81. Wongratanacheewin S, Sermswan RW, Sirisinha S (2003) Immunology and molecular biology of Opisthorchis viverrini infection. Acta Trop 88:195–207

    CAS  PubMed  Google Scholar 

  82. Sripa B, Bethony JM, Sithithaworn P et al (2011) Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop 120S:S158–S168

    Google Scholar 

  83. Sripa J, Brindley PJ, Sripa B et al (2012) Evaluation of liver fluke recombinant cathepsin B-1 protease as a serodiagnostic antigen for human opisthorchiasis. Parasitol Int 61:191–195

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sawangsoda P, Sithithaworn J, Tesana S et al (2012) Diagnostic values of parasite-specific antibody detections in saliva and urine in comparison with serum in opisthorchiasis. Parasitol Int 61:196–202

    CAS  PubMed  Google Scholar 

  85. Gomez-Morales MA, Ludovisi A, Amati M et al (2013) Validation of an excretory/secretory antigen based-Elisa for the diagnosis of Opisthorchis felineus infection in humans from low trematode endemic areas. PLoS One 8(5):e62267. doi:10.1371/journal.pone.0062267

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Levy C, Lymp J, Angulo P et al (2005) The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing colangitis. Dig Dis Sci 50:1734–1740

    CAS  PubMed  Google Scholar 

  87. Mulvenna J, Yonglitthipagon SB et al (2012) Banking on the future: biobanking for “omics” approaches to biomarker discovery for Opisthorchis-induced cholangiocarcinoma in Thailand. Parasitol Inter 61:173–177

    Google Scholar 

  88. Wongratanacheewin S, Pumidonming W, Sermswan RW et al (2002) Detection of Opisthorchis viverrini in human stool specimens by PCR. J Clin Microbiol 40:3879–3880

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Stensvold CR, Saijuntha W, Sithithaworn P et al (2006) Evaluation of PCR based coprodiagnosis of human opisthorchiasis. Acta Trop 97:26–30

    CAS  PubMed  Google Scholar 

  90. Duenngai K (2008) Improvement of PCR for detection of Opisthorchis viverrini DNA in human stool samples. J Clin Microbiol 46:366–368

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Pauly A, Schuster R, Steuber S (2003) Molecular characterization and differentiation of opisthorchiid trematodes of the species Opisthorchis felineus (Rivolta, 1884) and Metorchis bilis (Braun, 1790) using polymerase chain reaction. Parasitol Res 90:409–414

    PubMed  Google Scholar 

  92. Kang S, Sultana T, Loktev VB et al (2008) Molecular identification and phylogenetic analysis of nuclear rDNA sequences among three opisthorchiid liver fluke species (Opisthorchiidae: Trematoda). Parasitol Int 57:191–197

    CAS  PubMed  Google Scholar 

  93. Lovis (2009) PCR diagnosis of Opisthorchis viverrini and Haplorchis taichui ionfections in a Lao community in an area of endemicity and comparison of diagnostic methods for parasitological field surveys. J Clin Microbiol 47:1517–1523

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sato M, Pongvongsa T, Sanguankiat S (2010) Copro-DNA diagnosis of Opisthorchis viverrini and Haplorchis taichui infection in an endemic area of Lao PDR. Southeast Asian J Trop Med Public Health 41:28–35

    CAS  PubMed  Google Scholar 

  95. Wongsawad C, Phalee A, Noikong W et al (2012) Co-infection with Opisthorchis viverrini and Haplorchis taichui detected by human fecal examination in Chomtong district, Chiang mai province, Thailand. Parasitol Inter 61:56–59

    Google Scholar 

  96. Arimatsu Y, Kaewkes S, Laha T et al (2012) Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification. Parasitol Int 61:178–182

    CAS  PubMed  Google Scholar 

  97. Le TH, Hguyen NTB, Truong NH et al (2012) Development of mitochondrial loop-mediated isothermal amplification for detection of the small liver fluke Opisthorchis viverrini (Opisthorchiidae; Trematoda; Platyhelminthes). J Clin Microbiol 50:1178–1184

    PubMed Central  PubMed  Google Scholar 

  98. Wolfe MS (2007) Dicrocoelium dendriticum or Dicrocoelium hospes. Clin Infect Dis 44:1522

    PubMed  Google Scholar 

  99. Cabeza-Barrera I, Cabezas-Fernández T, Salas Coronas J et al (2011) Dicrocoelium dendriticum: an emerging spurious infection in a geographic area with a high level of immigration. Ann Trop Med Parasitol 105:403–406

    CAS  PubMed  Google Scholar 

  100. Rosicky B, Groschaft J (1982) Dicrocoeliosis. In: Hillyer GV, Hopla CE (eds) Handbook series in zoonoses, vol III, Section C: Parasite zoonoses. CRC, Bocaraton

    Google Scholar 

  101. Valero MA, Pérez-Crespo I, Periago MV et al (2009) Fluke egg characteristics for the diagnosis of human and animal fascioliasis by Fasciola hepatica and F. gigantica. Acta Trop 111:150–159

    PubMed  Google Scholar 

  102. Esteban JG, Bargues MD, Mas-Coma S (2008) Geographical distribution, diagnosis and treatment of human fascioliasis: a review. Res Rev Parasitol 58:13–42

    Google Scholar 

  103. Hillyer G (1999) Immunodiagnosis of human and animal fasiolosis. In: Dalton JP (ed) Fasciolosis. CAB, Wallingford

    Google Scholar 

  104. Dusak A, Onur MR, Cicek M et al (2012) Radiological imaging features of Fasciola hepatica infection—a pictorial review. J Clin Imaging Sci 2:2. doi:10.4103/2156-7514.92372

    PubMed Central  PubMed  Google Scholar 

  105. O’Neill SM, Parkinson M, Strauss W et al (1998) Immunodiagnosis of Fasciola hepatica infection (fascioliasis) in a human population in the Bolivian Altiplano using purified cathepsin L cysteine proteinase. Am J Trop Med Hyg 58:417–423

    PubMed  Google Scholar 

  106. Carnevale S, Rodríguez MI, Guarnera EA et al (2001) Immunodiagnosis of fasciolosis using recombinant procathepsin L cystein proteinase. Diagn Microbiol Infect Dis 41:43–49

    CAS  PubMed  Google Scholar 

  107. Rokni MB, Massoud J, O'Neill SM et al (2002) Diagnosis of human fasciolosis in the Gilan province of Northern Iran: application of cathepsin L-ELISA. Diagn Microbiol Infect Dis 44:175–179

    CAS  PubMed  Google Scholar 

  108. Intapan PM, Tantrawatpan C, Maleewong W et al (2005) Potent epitopes derived from Fasciola gigantica cathepsin L1 in peptide-based immunoassay for the serodiagnosis of human fascioliasis. Diagn Microbiol Infect Dis 53:125–129

    CAS  PubMed  Google Scholar 

  109. Wongkham C, Tantrawatpan C, Intapan PM et al (2005) Evaluation of immunoglobulin G subclass antibodies against recombinant Fasciola gigantica cathepsin L1 in an enzyme-linked immunosorbent assay for serodiagnosis of human fasciolosis. Clin Diagn Lab Immunol 12:1152–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Espinoza JR, Maco V, Marcos L et al (2007) Evaluation of Fas2-ELISA for the serological detection of Fasciola hepatica infection in humans. Am J Trop Med Hyg 76:977–982

    CAS  PubMed  Google Scholar 

  111. Tantrawatpan C, Maleewong W, Wongkham C et al (2007) Evaluation of immunoglobulin G4 subclass antibody in a peptide-based enzyme-linked immunosorbent assay for the serodiagnosis of human fascioliasis. Parasitology 134:2021–2026

    CAS  PubMed  Google Scholar 

  112. Sánchez-Andrade A, Suárez JL, Arias M et al (2008) Relationships between eosinophilia, anti-Fasciola IgG, and IgM rheumatoid factors, in urban and rural areas of north-western Spain. Ann Trop Med Parasitol 102:489–498

    PubMed  Google Scholar 

  113. Cornejo H, Oblitas F, Cruzado S et al (2010) Evaluation of an ELISA test with Fasciola hepatica metabolic antigen for diagnosis of human fascioliasis in Cajamarca, Peru. Rev Peru Med Exp Salud Publica 27:569–574

    PubMed  Google Scholar 

  114. Nguyen TG, Le TH, De NV et al (2010) Assessment of a 27-kDa antigen in enzyme-linked immunosorbent assay for the diagnosis of fasciolosis in Vietnamese patients. Trop Med Int Health 15:462–467

    CAS  PubMed  Google Scholar 

  115. Rahimi MT, Ashrafi K, Koosha S et al (2011) Evaluation of Fast-ELISA versus standard-ELISA to diagnose human fasciolosis. Arch Iran Med 14:18–21

    PubMed  Google Scholar 

  116. Figueroa-Santiago O, Delgado B, Espino AM (2011) Fasciola hepatica saposin-like protein-2-based ELISA for the serodiagnosis of chronic human fascioliasis. Diagn Microbiol Infect Dis 70:355–361

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Ali NM (2012) Development and evaluation of a dipstick assay in diagnosis of human fasciolosis. Parasitol Res 110:1649–1654

    PubMed  Google Scholar 

  118. Allam G, Bauomy IR, Hemyeda ZM et al (2012) Evaluation of a 14.5 kDa-Fasciola gigantica fatty acid binding protein as a diagnostic antigen for human fascioliasis. Parasitol Res 110:1863–1871

    PubMed  Google Scholar 

  119. Valero MA, Periago MV, Pérez-Crespo I et al (2012) Assessing the validity of an ELISA test for the serological diagnosis of human fascioliasis in different epidemiological situations. Trop Med Int Health 17:630–636

    CAS  PubMed  Google Scholar 

  120. Martínez-Sernández V, Muiño L, Perteguer MJ et al (2011) Development and evaluation of a new lateral flow immunoassay for serodiagnosis of human fasciolosis. PLoS Negl Trop Dis 5:e1376. doi:10.1371/journal.pntd.0001376

    PubMed Central  PubMed  Google Scholar 

  121. Ubeira FM, Muiño L, Valero MA et al (2009) MM3-ELISA detection of Fasciola hepatica coproantigens in preserved human stool samples. Am J Trop Med Hyg 81:156–162

    PubMed  Google Scholar 

  122. Valero MA, Periago MV, Pérez-Crespo I et al (2012) Field evaluation of a coproantigen detection test for fascioliasis diagnosis and surveillance in human hyperendemic areas of Andean countries. PLoS Negl Trop Dis 6(9):e1812. doi:10.1371/journal.pntd.0001812

    PubMed Central  PubMed  Google Scholar 

  123. Valero MA, Ubeira FM, Khoubbane M et al (2009) MM3-ELISA evaluation of coproantigen release and serum antibody production in sheep experimentally infected with Fasciola hepatica and F. gigantica. Vet Parasitol 159:77–81

    CAS  PubMed  Google Scholar 

  124. Mas-Coma S, Valero MA, Bargues MD (2009) Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 69:41–146

    PubMed  Google Scholar 

  125. Ai L, Chen MX, Alasaad S et al (2011) Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasit Vectors 4:101

    PubMed Central  PubMed  Google Scholar 

  126. Le TH, Nguyen KT, Nguyen NT et al (2012) Development and evaluation of a single-step duplex PCR for simultaneous detection of Fasciola hepatica and Fasciola gigantica (family Fasciolidae, class Trematoda, phylum Platyhelminthes). J Clin Microbiol 50:2720–2726

    PubMed Central  PubMed  Google Scholar 

  127. Procop GW (2009) North American paragonimiasis (caused by Paragonimus kellicotti) in the context of global paragonimiasis. Clin Microbiol Rev 22:415–446

    PubMed Central  PubMed  Google Scholar 

  128. Cabrera BD (1984) Paragonimiasis in the Philippines: current status. Arzneimittelforschung 34:1188–1192

    CAS  PubMed  Google Scholar 

  129. Blair D, Xu ZB, Agatsuma T (1999) Paragonimus and paragonimiasis. Adv Parasitol 3:99–158

    Google Scholar 

  130. Doanh PN, Shinohara A, Horii Y et al (2007) Description of a new lung fluke species, Paragonimus vietnamensis sp. nov. (Trematoda, Paragonimidae), found in northern Vietnam. Parasitol Res 101:1495–1501

    PubMed  Google Scholar 

  131. López-Caballero J, Oceguera-Figueroa A, León-Règagnon V (2013) Detection of multiple species of human Paragonimus from Mexico using morphological data and molecular barcodes. Mol Ecol Resour 13(6):1125–1136. doi:10.1111/1755-0998.12093

    PubMed  Google Scholar 

  132. Cabaret J, Bayssade-Dufour C, Tami G et al (1999) Identification of African Paragonimidae by multivariate analysis of the eggs. Acta Trop 72:79–89

    CAS  PubMed  Google Scholar 

  133. Blair D, Agatsuma T, Wang W (2007) Paragonimiasis. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites, world class parasites, vol 11. Springer, New York

    Google Scholar 

  134. Castilla EA, Jessen R, Sheck DN et al (2003) Cavitary mass lesion and recurrent pneumothoraces due to Paragonimus kellicotti infection—North American paragonimiasis. Am J Surg Pathol 27:1157–1160

    PubMed  Google Scholar 

  135. Xiaoxian G, Xiaohua S, Yue W et al (2005) Development of rapid diagnostic kit (DotImmunogold Filtration Assay) for detection of antibodies against Paragonimus westermani. Chinese J Zoon 21:988–990

    Google Scholar 

  136. Marty AM, Neafie RC (2000) Paragonimiasis. In: Meyers WM, Neafie RC, Marty AM, Wear DJ (eds) Pathology of infectious diseases, vol I, Helmintiases. American Registry of Pathology, Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  137. Zarrin-Khameh N, Citron DR, Stager CE et al (2008) Pulmonary paragonimiasis diagnosed by fine-needle aspiration biopsy. J Clin Microbiol 46:2137–2140

    PubMed Central  PubMed  Google Scholar 

  138. Vanijanota S, Radomyos P, Bunnag D et al (1981) Pulmonary paragonimiasis with expectoration of worms: a case report. Southeast Asian J Trop Med Public Health 12:104–106

    Google Scholar 

  139. Yoo IR, Park HJ, Hyun J et al (2006) Two cases of pulmonary paragonimiasis on FDG-PET CT imaging. Ann Nucl Med 20:311–315

    PubMed  Google Scholar 

  140. Osaki T, Takama T, Nakagawa M et al (2007) Pulmonary Paragonimus westermani with false-positive fluorodeoxyglucose positron emission tomography mimicking primary lung cancer. Gen Thorac Cardiovasc Surg 55:470–472

    PubMed  Google Scholar 

  141. Henry TS, Lane MA, Weil GJ et al (2012) Chest CT features of North American paragonimiasis. AJR Am J Roentgenol 198:1076–1083

    PubMed  Google Scholar 

  142. Koh EJ, Kim SK, Wang KC et al (2012) The return of an old worm: cerebral paragonimiasis presenting with intracerebral hemorrhage. J Korean Med Sci 27:1428–1432

    PubMed Central  PubMed  Google Scholar 

  143. Shim SS, Kim Y, Lee JK et al (2012) Pleuropulmonary and abdominal paragonimiasis: CT and ultrasound findings. Br J Radiol 85:403–410

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Kim KU, Lee K, Park HK et al (2011) A pulmonary paragonimiasis case mimicking metastatic pulmonary tumor. Korean J Parasitol 49:69–72

    PubMed Central  PubMed  Google Scholar 

  145. Lall M, Sahni AK, Rajput AK (2013) Pleuropulmonary paragonimiasis: mimicker of tuberculosis. Pathog Glob Health 107:40–42

    PubMed  Google Scholar 

  146. Yokogawa M (1965) Paragonimiasis and the genus Paragonimus. Adv Parasitol 42:113–222

    Google Scholar 

  147. Maleewong W (1997) Recent advances in diagnosis of paragonimiasis. Southeast Asian J Trop Med Public Heath 28(suppl 1):134–138

    Google Scholar 

  148. Yang SH, Park JO, Lee JH et al (2004) Cloning and characterization of a new cysteine proteinase secreted by Paragonimus westermani adult worms. Am J Trop Med Hyg 71:87–92

    CAS  PubMed  Google Scholar 

  149. Wongkham C, Intapan PM, Maleewong W et al (2005) Evaluation of human IgG subclass antibodies in the serodiagnosis of Paragonimiasis heterotremus. Asian Pac J Allergy Immunol 23:205–211

    CAS  PubMed  Google Scholar 

  150. Fischer PU, Curtis KC, Folk SM et al (2013) Serological diagnosis of North American paragonimiasis by Western blot using Paragonimus kellicotti adult worm antigen. Am J Trop Med Hyg 88(6):1035–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Lee EG, Na BK, Bae YA et al (2006) Identification of immunodominant excretory-secretory cysteine proteases of adult Paragonimus westermani by proteome analysis. Proteomics 6:1290–1300

    CAS  PubMed  Google Scholar 

  152. Lee JS, Lee J, Kim SH et al (2007) Molecular cloning and characterization of a major egg antigen in Paragonimus westermani and its use in ELISA for the immunodiagnosis of paragonimiasis. Parasitol Res 100:677–681

    PubMed  Google Scholar 

  153. Narain K, Devi KR, Mahanta J (2005) Development of enzyme-linked immunosorbent assay for serodiagnosis of human paragonimiasis. Indian J Med Res 121:739–746

    PubMed  Google Scholar 

  154. Nkouawa A, Okamoto M, Mabou AK et al (2009) Paragonimiasis in Cameroon: molecular identification, serodiagnosis and clinical manifestations. Trans R Soc Trop Med Hyg 103:255–261

    PubMed  Google Scholar 

  155. Fischer PU, Curtis KC, Marcos LA et al (2011) Molecular characterization of the North American lung fluke Paragonimus kellicotti in Missouri and its development in Mongolian gerbils. Am J Trop Med Hyg 84:1005–1011

    PubMed Central  PubMed  Google Scholar 

  156. Lane MA, Marcos LA, Onen NF et al (2012) Paragonimus kellicotti flukes in Missouri, USA. Emerg Infect Dis 18:1263–1267

    PubMed Central  PubMed  Google Scholar 

  157. Doanh PN, Shinohara A, Horii Y et al (2008) Discovery of Paragonimus westermani in Vietnam and its molecular phylogenetic status in P. westermani complex. Parasitol Res 104:1149–1155

    PubMed  Google Scholar 

  158. Iwagami M, Rajapakse RP, Paranagama W et al (2008) Ancient divergence of Paragonimus westermani in Sri Lanka. Parasitol Res 102:845–852

    PubMed  Google Scholar 

  159. Chang ZS, Wu B, Blair D et al (2000) Gene sequencing for identification of Paragonimus eggs from a human case. Chinese J Parasitol Parasit Dis 18:213–215

    CAS  Google Scholar 

  160. Le TH, De NV, Blair D et al (2006) Paragonimus heterotremus Chen et Asia, 1964 in Viet Nam: a molecular identification and relationships of isolates from different hosts and geographical origins. Acta Trop 98:25–33

    CAS  PubMed  Google Scholar 

  161. Devi KR, Narain K, Bhattacharya S et al (2007) Pleuropulmonary paragonimiasis due to Paragonimus heterotremus: molecular diagnosis, prevalence of infection and clinicoradiological features in an endemic area of northeastern India. Trans R Soc Trop Med Hyg 101:786–792

    PubMed  Google Scholar 

  162. Yahiro S, Habe S, Duong V et al (2008) identification of the human paragonimiasis causative agent in Lao People’s Democratic Republic. J Parasitol 94:1176–1177

    CAS  PubMed  Google Scholar 

  163. Zhou BJ, Yang BB, Doanh PN et al (2008) Sequence analyses of ITS2 and CO1 genes of Paragonimus proliferus obtained in Yunnan province, China and their similarities with those of P. hokuoensis. Parasitol Res 102:1379–1383

    PubMed  Google Scholar 

  164. Doanh PN, Dung do T, Thach DT et al (2011) Human paragonimiasis in Vietnam: epidemiological survey and identification of the responsible species by DNA sequencing of eggs in patients' sputum. Parasitol Int 60:534–537

    CAS  PubMed  Google Scholar 

  165. Intapan PM, Sanpool O, Thanchomnang T et al (2012) Molecular identification of a case of Paragonimus pseudoheterotremus infection in Thailand. Am J Trop Med Hyg 87:706–709

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Chen MX, Ai L, Zhang RL et al (2011) Sensitive and rapid detection of Paragonimus westermani infection in humans and animals by loop-mediated isothermal amplification (LAMP). Parasitol Res 108:1193–1198

    CAS  PubMed  Google Scholar 

  167. Tantrawatpan C, Intapan PM, Janwan P et al (2013) Molecular identification of Paragonimus species by DNA pyrosequencing technology. Parasitol Int 62:341–345

    CAS  PubMed  Google Scholar 

  168. Toledo R, Esteban JG, Fried B (2006) Immunology and pathology of intestinal trematodes in their definitive hosts. Adv Parasitol 63:285–365

    PubMed  Google Scholar 

  169. Chai JY (2007) Intestinal flukes. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites, world class parasites, vol 11. Springer, New York

    Google Scholar 

  170. Chai JY (2009) Echinostomes in humans. In: Fried B, Toledo R (eds) The biology of Echinostomes. From the molecule to the community. Springer, New York

    Google Scholar 

  171. Chai JY, Shin EH, Lee SH et al (2009) Foodborne intestinal flukes in Southeast Asia. Korean J Parasitol 47:S69–S102

    PubMed Central  PubMed  Google Scholar 

  172. Chai JY, Han ET, Guk SM et al (2007) High prevalence of liver and intestinal fluke infections among residents of Savannakhet Province in Laos. Korean J Parasitol 45:213–218

    PubMed Central  PubMed  Google Scholar 

  173. Chai JY, Han ET, Shin EH et al (2009) High prevalence of Haplorchis taichui, Phaneropsolus molenkampi, and other helminth infections among people in Khammouane province, Lao PDR. Korean J Parasitol 47:243–247

    PubMed Central  PubMed  Google Scholar 

  174. Yu S, Mott K (1994) Epidemiology and morbidity of food-borne intestinal trematode infections. Trop Dis Bull 91:R125–R152

    Google Scholar 

  175. Esteban JG, Muñoz-Antoli C (2009) Echinostomes: Systematics and life cycles. In: Fried B, Toledo R (eds) The biology of Echinostomes. From the molecule to the community. Springer, New York

    Google Scholar 

  176. Graczyk TK, Gilman RH, Fried B (2001) Fasciolopsiasis: is it a controllable food-borne disease? Parasitol Res 87:80–83

    CAS  PubMed  Google Scholar 

  177. Chai JY, Yong TS, Eom KS et al (2010) Prevalence of the intestinal flukes Haplorchis taichui and H. yokogawai in a mountainous area of Phongsaly Province, Lao PDR. Korean J Parasitol 48:339–342

    PubMed Central  PubMed  Google Scholar 

  178. Chai JY, Lee SH (2002) Food-borne intestinal trematode infections in the Republic of Korea. Parasitol Int 51:129–154

    PubMed  Google Scholar 

  179. Chai JY, Yu JR, Lee SH et al (1989) An egg-negative patient of acute metagonimiasis diagnosed serologically by ELISA. Seoul J Med 30:138–142

    Google Scholar 

  180. Ditrich O, Kopacek P, Giboda M et al (1991) Serological differentiation of human small fluke infections using Opisthorchis viverrini and Haplorchis taichui antigens. Southeast Asian J Trop Med Public Health 22:174–178

    PubMed  Google Scholar 

  181. Lee SC, Chung YB, Kong Y et al (1993) Antigenic protein fractions of Metagonimus yokogawai reacting with patient sera. Korean J Parasitol 31:43–48

    CAS  PubMed  Google Scholar 

  182. Thaenkham U, Visetsuk K, Dung DT et al (2007) Discrimination of Opisthorchis viverrini from Haplorchis taichui using COI sequence marker. Acta Trop 103:26–32

    CAS  PubMed  Google Scholar 

  183. Sato M, Thaenkham U, Dekumyoy P et al (2009) Discrimination of O. viverrini, C. sinensis, H. pumilio and H. taichui using nuclear DNA-based PCR targeting ribosomal DNA ITS regions. Acta Trop 109:81–83

    CAS  PubMed  Google Scholar 

  184. Wongsawad P, Wongsawad C (2009) Development of PCR-based diagnosis of minute intestinal fluke, Haplorchis taichui. Southeast Asian J Trop Med Public Health 40:919–923

    CAS  PubMed  Google Scholar 

  185. Wongsawad C, Wongsawad P, Chuboon S et al (2009) Copro-diagnosis of Haplorchis taichui infection using sedimentation and PCR-based methods. Southeast Asian J Trop Med Public Health 40:924–928

    PubMed  Google Scholar 

  186. Wongsawad C, Wongsawad P, Chai JY et al (2009) Haplorchis taichui, Witenberg, 1930: Development of a HAT-RAPD marker for the detection of minute intestinal fluke infection. Exp Parasitol 123:158–161

    CAS  PubMed  Google Scholar 

  187. Wongsawad C, Wongsawad P (2012) Opisthorchis viverrini and Haplorchis taichui: development of a multiple PCR assay for their detection and differentiation using specific primers derived from HAT-RAPD. Exp Parasitol 132:237–242

    CAS  PubMed  Google Scholar 

  188. Pagès JR, Jourdane J, Southgate VR et al (2003) Reconnaissance de deux espèces jumelles au sein du taxon Schistosoma intercalatum Fisher, 1934, agent de la schistosomose humaine rectale en Afrique. Description de Schistosoma guineensis n. sp. In: Combes C, Jourdane J (eds) Taxonomy, ecology and evolution of metazoan parasites, vol II. Presses Universitaires de Perpignan, Perpignan

    Google Scholar 

  189. Webster BL, Southgate VR, Littlewood DTJ (2006) A revision of the interrelationships of Schistosoma including the recently described Schistosoma guineensis. Int J Parasitol 36:947–955

    CAS  PubMed  Google Scholar 

  190. Cheever AW, Neafie RC (2000) Schistosomiasis. In: Neafie RC, Marty AM, Wear DJ, Meyers WM (eds) Pathology of infectious diseases, vol I, Helmintiases. American Registry of Pathology, Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  191. Lambertucci JR, dos Santos Silva LC, Mota Andrade L et al (2008) Imaging techniques in the evaluation of morbidity in schistosomiasis mansoni. Acta Trop 108:209–217

    PubMed  Google Scholar 

  192. Gryseels B, Polman K, Clerinx J et al (2006) Human schistosomiasis. Lancet 368:1106–1118

    PubMed  Google Scholar 

  193. Fritzsche C, Stachs O, Holtfreter MC et al (2012) Confocal laser scanning microscopy, a new in vivo diagnostic tool for schistosomiasis. PLoS One 7(4):e34869. doi:10.1371/ journal.pone.0034869

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Hatz CF (2001) The use of ultrasound in schistosomiasis. Adv Parasitol 48:225–284

    CAS  PubMed  Google Scholar 

  195. Ohmae H, Sinuon M, Kirinoki M et al (2004) Schistosomiasis mekongi: from discovery to control. Parasitol Int 53:135–142

    PubMed  Google Scholar 

  196. Ross AGP, Bartley PB, Sleigh AC et al (2002) Schistosomiasis. N Engl J Med 346:1212–1220

    PubMed  Google Scholar 

  197. Lengeler C, Utzinger J, Tanner M (2002) Screening for schistosomiasis with questionnaires. Trends Parasitol 18:375–377

    PubMed  Google Scholar 

  198. Ellis MK, Li Y, Hou X et al (2008) sTNFR-II and sICAM-1 are associated with acute disease and hepatic imflammation in schistosomiasis japonica. Int J Parasitol 38:717–723

    CAS  PubMed Central  PubMed  Google Scholar 

  199. McManus DP, Gray DJ, Li Y et al (2010) Schistosomiasis in the People’s Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 23:442–466

    PubMed Central  PubMed  Google Scholar 

  200. Muth S, Sayasone S, Odermatt-Biays S et al (2010) Schistosoma mekongi in Cambodia and Lao People’s Democratic Republic. Adv Parasitol 72:179–203

    PubMed  Google Scholar 

  201. Zhu HP, Yu CH, Xia X et al (2010) Assessing the diagnostic accuracy of immunodiagnostic techniques in the diagnosis of schistosomiasis japonica: a meta-analysis. Parasitol Res 107:1067–1073

    PubMed  Google Scholar 

  202. Wang W, Li Y, Li H et al (2012) Immunodiagnostic efficacy of detection of Schistosoma japonicum human infections in China: a meta-analysis. Asian Pac J Trop Med 5:15–23

    CAS  PubMed  Google Scholar 

  203. Zhao GH, Li J, Blair D et al (2012) Biotechnological advances in the diagnosis, species differentiation and phylogenetic analysis of Schistosoma spp. Biotechnol Adv 30:1381–1389

    CAS  PubMed  Google Scholar 

  204. van Gool T, Vetter JCM, Vervoort T et al (2002) Serodiagnosis of imported schistosomiasis by a combination of a commercial indirect hemagglutination test with Schistosoma mansoni adult worm antigens and enzyme-linked immunosorbent assay with S. mansoni egg antigens. J Clin Microbiol 40:3232–3237

    Google Scholar 

  205. Bierman WFW, Wetsteyn JCFM, van Gool TV (2005) Presentation and diagnosis of imported schistosomiasis: relevance of eosinophilia, microscopy for ova, and serology. J Travel Med 12:9–13

    PubMed  Google Scholar 

  206. Bottieau E, Clerinx J, De Vega MR et al (2006) Imported Katayama fever: clinical and biological features at presentation and during treatment. J Infect 52:339–345

    PubMed  Google Scholar 

  207. Cavalcanti MG, Silva LF, Peralta RHS et al (2013) Schistosomiasis in áreas of low endemicity: a new era in diagnosis. Trends Parasitol 29:75–82

    PubMed  Google Scholar 

  208. Yu Q, Yang H, Feng Y et al (2012) Magnetic affinity enzyme-linked immunoassay for diagnosis of schistosomiasis japonicum in persons with low-intensity infection. Am J Trop Med Hyg 87:689–693

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Legesse M, Erko B (2007) Field-based evaluation of a reagent striptest for diagnosis of Schistosoma mansoni by detecting circulating cathodic antigen in urine before and after chemotherapy. Trans R Soc Trop Med Hyg 101:668–673

    PubMed  Google Scholar 

  210. Zhu YC (2005) Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop 96:130–136

    PubMed  Google Scholar 

  211. Van Dam GJ, Wichers JH, Ferreira TMF et al (2004) Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. J Clin Microbiol 42:5458–5461

    PubMed Central  PubMed  Google Scholar 

  212. Stothard JR, Kabatereine NB, Tukahebwa EM et al (2006) Use of circulating cathodic antigen (CCA) dipsticks for detection of intestinal and urinary schistosomiasis. Acta Trop 97:219–228

    CAS  PubMed  Google Scholar 

  213. Stothard JR, Sousa-Figueiredo JCS, Standley C et al (2009) An evaluation of urine-CCA strip test and fingerprick blood SEA-ELISA for detection of urinary schistosomiasis in schoolchildren in Zanzibar. Acta Trop 111:64–70

    CAS  PubMed  Google Scholar 

  214. Ashton RA, Stewart BT, Petty N et al (2011) Accuracy of circulating cathodic antigen tests for rapid mapping of Schistosoma mansoni and S. haematobium infections in Southern Sudan. Trop Med Int Health 16:1099–1103

    PubMed  Google Scholar 

  215. Navaratnam AM, Mutumba-Nakalembe MJ, Stothard JR et al (2012) Notes on the use of urine-CCA dipsticks for detection of intestinal schistosomiasis in preschool children. Trans R Soc Trop Med Hyg 106:619–622

    CAS  PubMed  Google Scholar 

  216. Tchuem Tchuenté LA, Kueté Fouodo CJ, Kamwa Ngassam RI et al (2012) Evaluation of circulating cathodic antigen (CCA) urine-tests for diagnosis of Schistosoma mansoni infection in Cameroon. PLoS Negl Trop Dis 6:e1758

    PubMed Central  PubMed  Google Scholar 

  217. Colley DG, Binder S, Campbell C et al (2013) A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88:426–432

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Coulibaly JT, N’Gbesso YK, Knopp S et al (2013) Accuracy of urine circulating cathodic antigen test for the diagnosis of Schistosoma mansoni in preschool-aged children before and after treatment. PLoS Negl Trop Dis 7:e2109. doi:10.1371/journal.pntd.0002109

    PubMed Central  PubMed  Google Scholar 

  219. Demerdash Z, Mohamed S, Hendawy M et al (2013) Monoclonal antibody-based dipstick assay: a reliable field applicable technique for diagnosis of Schistosoma mansoni infection using human serum and urine samples. Korean J Parasitol 51:93–98

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Grenfell R, Harn DA, Tundup S et al (2013) New approaches with different types of circulating cathodic antigen for the diagnosis of patients with low Schistosoma mansoni load. PLoS Negl Trop Dis 7(2):e2054. doi:10.1371/journal.pntd.0002054

    PubMed Central  PubMed  Google Scholar 

  221. Corstjens PL, van Lieshout L, Zuiderwijk M et al (2008) Up-converting phosphor technology-based lateral flow assay for detection of Schistosoma circulating anodic antigen in serum. J Clin Microbiol 46:171–176

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Coulibaly JT, N’Goran EK, Utzinger J et al (2013) A new rapid diagnostic test for detection of anti-Schistosoma mansoni and anti-Schistosoma haematobium antibodies. Parasit Vectors 6:29

    PubMed Central  PubMed  Google Scholar 

  223. Robijn ML, Planken J, Kornelis D et al (2008) Mass spectrometric detection of urinary oligosaccharides as markers of Schistosoma mansoni infection. Trans R Soc Trop Med Hyg 102:79–83

    CAS  PubMed  Google Scholar 

  224. Gray DJ, Ross AG, Li YS et al (2011) Diagnosis and management of schistosomiasis. BMJ 342:d2651. doi:10.1136/bmj.d2651

    PubMed Central  PubMed  Google Scholar 

  225. Lier T, Simonsen GS, Wang T et al (2009) Real-time polymerase chain reaction for detection of low-intensity Schistosoma japonicum infections in China. Am J Trop Med Hyg 81:428–432

    CAS  PubMed  Google Scholar 

  226. Gomes LI, Marques LH, Enk MJ et al (2010) Development and evaluation of a sensitive PCR-ELISA system for detection of Schistosoma infection in feces. PLoS Negl Trop Dis 4(4):e664. doi:10.1371/journal.pntd.0000664

    PubMed Central  PubMed  Google Scholar 

  227. Xu J, Rong R, Zhang HQ et al (2010) Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int J Parasitol 40:327–331

    CAS  PubMed  Google Scholar 

  228. Cnops L, Tannich E, Polman K et al (2012) Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Trop Med Int Health 17:1208–1216

    PubMed  Google Scholar 

  229. Aryeetey YA, Essien-Baidoo S, Larbi IA et al (2013) Molecular diagnosis of Schistosoma infections in urine samples of school children in Ghana. Am J Trop Med Hyg 88:1028–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Wichmann D, Poppert S, Von Thien H et al (2013) Prospective European-wide multicentre study on a blood based real-time PCR for the diagnosis of acute schistosomiasis. BMC Infect Dis 13:55. doi:10.1186/1471-2334-13-55

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the project PROMETEO/2009/081 of Conselleria d’Educació, Generalitat Valenciana (Valencia, Spain), by project SN07.A126 of Cooperación al Desarrollo de la Universitat de València (Valencia, Spain), and by project RD12/0018/0013 of the Red de Investigación de Centros de Enfermedades Tropicales, Ministry of Health and Consumption (Madrid, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guillermo Esteban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esteban, J.G., Muñoz-Antoli, C., Toledo, R., Ash, L.R. (2014). Diagnosis of Human Trematode Infections. In: Toledo, R., Fried, B. (eds) Digenetic Trematodes. Advances in Experimental Medicine and Biology, vol 766. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0915-5_9

Download citation

Publish with us

Policies and ethics