Skip to main content

Microbiome, HPA Axis and Production of Endocrine Hormones in the Gut

Part of the Advances in Experimental Medicine and Biology book series (MICENDO,volume 817)

Abstract

Recent accumulating evidence indicates that the gut microbiome can affect the development and regulation of the hypothalamic-pituitary-adrenal axis and behavior, with central integrative systems being crucial in the successful physiological adaptation of the organism to external stressor. In contrast, host-derived hormones increase the bacterial proliferative capacity and pathogenicity. In the gut lumen, this type of cross-talk between microorganisms and the host is presumed to be performed continually through various kinds of luminal molecules, as numerous types of bacteria and host cells are in close proximity in the gastrointestinal tract of mammals.

We herein focus on bidirectional signaling between the gut microbiome and the host in terms of commensal microbiota affecting the hypothalamic-pituitary-adrenal HPA axis response and behaviors and further discuss the role of gut luminal catecholamines and γ-aminobutyric acid, both of which are presumed to be involved in this signaling.

Keywords

  • Commensal Microbiota
  • Bifidobacterium Infantis
  • Stress Resilience
  • Gnotobiotic Mouse
  • Cecal Lumen

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0897-4_8
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0897-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10

Abbreviations

ACTH:

Adrenocorticotropin hormone

CA:

Catecholamines

CRH:

Corticotrophin-releasing hormone

DA:

Dopamine

E:

Epinephrine

EHEC:

Enterohemorrhagic Escherichia coli

GABA:

γ-Aminobutyric acid

GAD:

Glutamic acid decarboxylase

GC:

Glucocorticoids

GUS:

β-Glucuronidase

HPA:

Hypothalamic-pituitary-adrenal

NE:

Norepinephrine

Tir:

Translocated intimin receptor

References

  1. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24(1):4–10

    CAS  PubMed  CrossRef  Google Scholar 

  2. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14(4):169–181

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  3. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159(4):1739–1745

    CAS  PubMed  Google Scholar 

  4. Finlay BB (1990) Cell adhesion and invasion mechanisms in microbial pathogenesis. Curr Opin Cell Biol 2(5):815–820

    CAS  PubMed  CrossRef  Google Scholar 

  5. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(1):263–275

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  6. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104(3):979–984

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  7. Heijtza RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108(7):3047–3052

    CrossRef  Google Scholar 

  8. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(3):255–264

    CAS  PubMed  CrossRef  Google Scholar 

  9. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317

    PubMed  CrossRef  Google Scholar 

  10. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673

    CAS  PubMed  CrossRef  Google Scholar 

  11. Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T et al (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25(6):521–528

    CAS  PubMed  CrossRef  Google Scholar 

  12. Lyte M, Ernst S (1992) Catecholamine induced growth of gram-negative bacteria. Life Sci 50(3):203–212

    CAS  PubMed  CrossRef  Google Scholar 

  13. Lyte M, Ernst S (1993) Alpha-adrenergic and beta-adrenergic-receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190(2):447–452

    CAS  PubMed  CrossRef  Google Scholar 

  14. Lyte M, Frank C, Green B (1996) Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol Lett 139(2–3):155–159

    CAS  PubMed  CrossRef  Google Scholar 

  15. Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12(1):14–20

    CAS  PubMed  CrossRef  Google Scholar 

  16. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103(27):10420–10425

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  17. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6(2):111–120

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  18. Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12(2):192–198

    CAS  PubMed  CrossRef  Google Scholar 

  19. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314

    CAS  PubMed  CrossRef  Google Scholar 

  20. Chrousos G, Gold P (1992) The concepts of stress and stress system disorders – overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252

    CAS  PubMed  CrossRef  Google Scholar 

  21. Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239(4841 Pt 1):766–768

    CAS  PubMed  CrossRef  Google Scholar 

  22. Schmidt M, Oitzl MS, Levine S, De Kloet ER (2002) The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. Brain Res Dev Brain Res 139(1):39–49

    CAS  PubMed  CrossRef  Google Scholar 

  23. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91(4):511–520

    CAS  PubMed  CrossRef  Google Scholar 

  24. Bonanno G (2004) Loss, trauma, and human resilience – have we underestimated the human capacity to thrive after extremely aversive events? Am Psychol 59(1):20–28

    PubMed  CrossRef  Google Scholar 

  25. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904

    PubMed  CrossRef  Google Scholar 

  26. McEwen BS, Stellar E (1993) Stress and the individual. Mechanisms leading to disease. Arch Intern Med 153(18):2093–2101

    CAS  PubMed  CrossRef  Google Scholar 

  27. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935

    CAS  PubMed  CrossRef  Google Scholar 

  28. Southwick SM, Vythilingam M, Charney DS (2005) The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 1:255–291

    PubMed  CrossRef  Google Scholar 

  29. Huhman KL (2006) Social conflict models: can they inform us about human psychopathology? Horm Behav 50(4):640–646

    PubMed  CrossRef  Google Scholar 

  30. Lehmann ML, Herkenham M (2011) Environmental enrichment confers stress resiliency to social defeat through an infralimbic cortex-dependent neuroanatomical pathway. J Neurosci 31(16):6159–6173

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  31. Selye H (1956) The stress of life. McGraw-Hill, New York

    Google Scholar 

  32. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  33. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56(3):331–349

    CAS  PubMed  CrossRef  Google Scholar 

  34. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295

    CAS  PubMed  CrossRef  Google Scholar 

  35. Yoneda S, Alexander N, Vlachakis ND (1983) Enzymatic deconjugation of catecholamines in human and rat plasma and red blood cell lysate. Life Sci 33(10):935–942

    CAS  PubMed  CrossRef  Google Scholar 

  36. Gaudin C, Ruget G, Selz F, Cuche JL (1985) Free and conjugated catecholamines in digestive tissues of rats. Life Sci 37(16):1469–1474

    CAS  PubMed  CrossRef  Google Scholar 

  37. Kim DH, Jin YH, Jung EA, Han MJ, Kobashi K (1995) Purification and characterization of beta-glucuronidase from Escherichia coli HGU-3, a human intestinal bacterium. Biol Pharm Bull 18(9):1184–1188

    CAS  PubMed  CrossRef  Google Scholar 

  38. Rod T, Midtvedt T (1977) Origin of intestinal beta-glucuronidase in germfree, mono-contaminated and conventional rats. Acta Pathol Microbiol Immunol Scand B 85(4):271–276

    CAS  Google Scholar 

  39. Shiga A, Sasaki T, Horii N (1987) Correlations among pH and Mg, Ca, P, Na, K, Cl- and HCO3- contents of digesta in the gastro-intestinal tract of rats. Nihon Juigaku Zasshi 49(6):973–979

    CAS  PubMed  CrossRef  Google Scholar 

  40. Ward FW, Coates ME (1987) Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and fasting. Lab Anim 21(3):216–222

    CAS  PubMed  CrossRef  Google Scholar 

  41. Ilett KF, Tee LB, Reeves PT, Minchin RF (1990) Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther 46(1):67–93

    CAS  PubMed  CrossRef  Google Scholar 

  42. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372(1–6):115–117

    CAS  PubMed  Google Scholar 

  43. Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In Lyte M, Freestone PP (eds) Microbial Endocrinology. Springer, New York, pp 17–52

    Google Scholar 

  44. Solano F, Garcia E, Perez D, Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium. Appl Environ Microbiol 63(9):3499–3506

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hernandez-Romero D, Sanchez-Amat A, Solano F (2006) A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J 273(2):257–270

    CAS  PubMed  CrossRef  Google Scholar 

  46. Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448(7156):952–956

    CAS  PubMed  CrossRef  Google Scholar 

  47. Vaughan C, Aherne A, Lane E, Power O, Carey R, O’Connell D (2000) Identification and regional distribution of the dopamine D-1A receptor in the gastrointestinal tract. Am J Physiol Regul Integr Comp Physiol 279(2):R599–R609

    CAS  PubMed  Google Scholar 

  48. Lam R, App E, Nahirney D, Szkotak A, Vieira-Coelho M, King M et al (2003) Regulation of Cl- secretion by alpha-adrenergic receptors in mouse colonic epithelium. J Physiol 548(2):475–484

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  49. Barry MK, Aloisi JD, Pickering SP, Yeo CJ (1994) Luminal adrenergic agents modulate ileal transport: discrimination between alpha 1 and alpha 2 receptors. Am J Surg 167(1):156–162

    CAS  PubMed  CrossRef  Google Scholar 

  50. Barry MK, Maher MM, Gontarek JD, Jimenez RE, Yeo CJ (1995) Luminal dopamine modulates canine ileal water and electrolyte transport. Dig Dis Sci 40(8):1738–1743

    CAS  PubMed  CrossRef  Google Scholar 

  51. Strandberg K, Sedvall G, Midtvedt T, Gustafsson B (1966) Effect of some biologically active amines on the cecum wall of germfree rats. Proc Soc Exp Biol Med 121(3):699–702

    CAS  PubMed  CrossRef  Google Scholar 

  52. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N et al (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186(6):3745–3752

    CAS  PubMed  CrossRef  Google Scholar 

  53. Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24(4):525–528

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  54. Smith DK, Kassam T, Singh B, Elliott JF (1992) Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174(18):5820–5826

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I (1998) Production of gamma-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci 81(6):1486–1491

    CAS  PubMed  CrossRef  Google Scholar 

  56. Yokoyama S, Hiramatsu J, Hayakawa K (2002) Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng 93(1):95–97

    CAS  PubMed  Google Scholar 

  57. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E et al (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2:233

    PubMed Central  PubMed  Google Scholar 

  58. Shelp BJ, Bown AW, Faure D (2006) Extracellular gamma-aminobutyrate mediates communication between plants and other organisms. Plant Physiol 142(4):1350–1352

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  59. Li Y, Xiang YY, Lu WY, Liu C, Li J (2012) A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion. Am J Physiol Gastrointest Liver Physiol 303(4):G453–G460

    CAS  PubMed  CrossRef  Google Scholar 

  60. Lyte M (2010) The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74(4):634–638

    PubMed  CrossRef  Google Scholar 

  61. Lenard J (1992) Mammalian hormones in microbial cells. Trends Biochem Sci 17(4):147–150

    CAS  PubMed  CrossRef  Google Scholar 

  62. LeRoith D, Shiloach J, Roth J, Lesniak MA (1981) Insulin or a closely related molecule is native to Escherichia coli. J Biol Chem 256(13):6533–6536

    CAS  PubMed  Google Scholar 

  63. LeRoith D, Shiloach J, Heffron R, Rubinovitz C, Tanenbaum R, Roth J (1985) Insulin-related material in microbes: similarities and differences from mammalian insulins. Can J Biochem Cell Biol 63(8):839–849

    CAS  PubMed  CrossRef  Google Scholar 

  64. Le Roith D, Shiloach J, Roth J, Lesniak MA (1980) Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc Natl Acad Sci U S A 77(10):6184–6188

    PubMed Central  PubMed  CrossRef  Google Scholar 

  65. Leroith D, Liotta AS, Roth J, Shiloach J, Lewis ME, Pert CB et al (1982) Corticotropin and beta-endorphin-like materials are native to unicellular organisms. Proc Natl Acad Sci U S A 79(6):2086–2090

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  66. LeRoith D, Pickens W, Vinik AI, Shiloach J (1985) Bacillus subtilis contains multiple forms of somatostatin-like material. Biochem Biophys Res Commun 127(3):713–719

    CAS  PubMed  CrossRef  Google Scholar 

  67. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV (2004) Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20(7):292–299

    CAS  PubMed  CrossRef  Google Scholar 

  68. Takahashi T, Sakaguchi E (2006) Transport of bacteria across and along the large intestinal lumen of guinea pigs. J Comp Physiol B 176(2):173–178

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Sudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Sudo, N. (2014). Microbiome, HPA Axis and Production of Endocrine Hormones in the Gut. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_8

Download citation