Abstract
The interaction between the brain and the gut has been recognized for many centuries. This bidirectional interaction occurs via neural, immunological and hormonal routes, and is important not only in normal gastrointestinal function but also plays a significant role in shaping higher cognitive function such as our feelings and our subconscious decision-making. Therefore, it remains unsurprising that perturbations in normal signalling have been associated with a multitude of disorders, including inflammatory and functional gastrointestinal disorders, and eating disorders.
Keywords
- Inflammatory Bowel Disease
- Irritable Bowel Syndrome
- Anorexia Nervosa
- Anterior Cingulate Cortex
- Eating Disorder
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



Abbreviations
- 5-HT:
-
5-Hydroxytryptimaine
- ACC:
-
Anterior cingulate cortex
- Ach:
-
Acetylcholine
- ANS:
-
Autonomic nervous system
- CCK1R:
-
Cholecystokinin 1 receptor
- CNS:
-
Central nervous system
- CRH:
-
Corticotropin-releasing factor
- DMN:
-
Dorsal motor nucleus of the vagus
- EMS:
-
Emotional motor system
- FGF19:
-
Fibroblast growth factor 19
- fMRI:
-
Functional magnetic resonance imaging
- GALT:
-
Gut-associated lymphoid tissue
- GI:
-
Gastrointestinal
- GLP1:
-
Glucagon-like peptide-1
- GPR:
-
G-protein coupled receptor
- HPA:
-
Hypothalamic-pituitary-adrenal
- IBD:
-
Inflammatory bowel disease
- IBS:
-
Irritable bowel syndrome
- KLB:
-
Klotho beta
- NF- κB:
-
Nuclear factor κB
- NPY:
-
Neuropeptide Y
- OFC:
-
Orbitofrontal cortex
- PAG:
-
Periaqueductal grey
- PFC:
-
Prefrontal cortex
- TNF-α:
-
Tumor necrosis factor-α
- α7nAChR:
-
α7 nicotinic acetylcholine receptor
References
Almy TP (1989) Historical perspectives of functional bowel disease. In: Snape WJ (ed) Pathogenesis of functional bowel disease. Plenum, New York, pp 1–11
James W (1884) What is an emotion? Mind 9:188–205
Cannon WB (1909) The influence of emotional states on the functions of the alimentary canal. Am J Med Sci 137:480–487
Pavlov I (1910) The work of digestive glands (English translation from Russian by W. H. Thompson). Griffin, London
Wolf S, Wolff HG (1943) Human gastric function: an experimental study of a man and his stomach. Oxford University, New York
Beaumont W (1959) Experiments and observations on the gastric juice and the physiology of digestion (Facsimile of the original publication of 1833). Dover, New York
Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219
Bandler R, Keay KA (1996) The emotional motor system. In: Holstege G, Bandler R, Saper CB (eds) Progress in brain research. Elsevier, Amsterdam, pp 285–300
Holstege G, Bandler R, Saper CB (1996) The emotional motor system. Prog Brain Res 107:3–6
Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47(6):861–869
Mason P (2011) From descending pain modulation to obesity via the medullary raphe. Pain 152(3 Suppl):S20–S24
Valentino RJ, Miselis RR, Pavcovich LA (1999) Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 20(6):253–260
Browning KN, Travagli RA (2011) Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci 161(1–2):6–13
Martinez V, Tache Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12(31):4071–4088
Welgan P, Meshkinpour H, Ma L (2000) Role of anger in antral motor activity in irritable bowel syndrome. Dig Dis Sci 45(2):248–251
Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51
Furness JB (2006) The enteric nervous system. Blackwell, Oxford
Jaenig W (2006) Integrative action of the autonomic nervous system. Cambridge University Press, New York
Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638
Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314
Lyte M, Vulchanova L, Brown DR (2011) Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343(1):23–32
Stephens RL, Tache Y (1989) Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats. Am J Physiol 256(2 Pt 1):G377–G383
Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19(6):493–499
Welgan P, Meshkinpour H, Beeler M (1988) Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94(5 Pt 1):1150–1156
Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract (1995) 34(7):31-2, 5-8, 41-2 passim
Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153(1–2):41–46
McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G (1998) Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, Ca2 + -dependent mechanism in the enteroendocrine cell line STC-1. J Physiol 513(Pt 1):11–18
Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ et al (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140(3):903–912
Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132(1):397–414
Rozengurt E, Sternini C (2007) Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7(6):557–562
Clerc N, Furness JB (2004) Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol Motil 16(Suppl 1):24–27
Keita AV, Soderholm JD (2010) The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 22(7):718–733
Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257
Gershon MD (2005) Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 39(5 Suppl 3):S184–S193
de Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105(1):100–105
Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP (2013) Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10:286–296
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359
Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510
Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712
Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420
Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826
Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G et al (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37
McDermott JR, Leslie FC, D’Amato M, Thompson DG, Grencis RK, McLaughlin JT (2006) Immune control of food intake: enteroendocrine cells are regulated by CD4+ T lymphocytes during small intestinal inflammation. Gut 55(4):492–497
Mawe GM, Strong DS, Sharkey KA (2009) Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil 21(5):481–491
Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R et al (2011) Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 17(8):1769–1777
Bradley RM, Kim M (2007). In: Bradley RM (ed) The role of the nucleus of the solitary tract in gustatory processing. Taylor & Francis Group, LLC, Boca Raton
Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339
Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242
Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A et al (2009) Functional organization of the human anterior insular cortex. Neurosci Lett 457(2):66–70
Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534
Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40(3):655–664
Pepino MY, Mennella JA (2005) Sucrose-induced analgesia is related to sweet preferences in children but not adults. Pain 119(1–3):210–218
Foo H, Mason P (2009) Analgesia accompanying food consumption requires ingestion of hedonic foods. J Neurosci 29(41):13053–13062
Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13(1):24–28
Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642
Sikandar S, Dickenson AH (2012) Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care 6(1):17–26
Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381
Stengel A, Tache Y (2010) Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med (Maywood) 235(10):1168–1178
Tillisch K, Labus JS (2011) Advances in imaging the brain-gut axis: functional gastrointestinal disorders. Gastroenterology 140(2):407–411 e1
Mayer EA, Tillisch K (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62:381–396
Mayer EA (2008) Clinical practice. Irritable bowel syndrome. N Engl J Med 358(16):1692–1699
Tornblom H, Van Oudenhove L, Sadik R, Abrahamsson H, Tack J, Simren M (2012) Colonic transit time and IBS symptoms: what’s the link? Am J Gastroenterol 107(5):754–760
Ludidi S, Conchillo JM, Keszthelyi D, Koning CJ, Vanhoutvin SA, Lindsey PJ et al (2012) Does meal ingestion enhance sensitivity of visceroperception assessment in irritable bowel syndrome? Neurogastroenterol Motil 24(1):47–53, e3
Shepherd SJ, Parker FC, Muir JG, Gibson PR (2008) Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol 6(7):765–771
Johnston I, Nolan J, Pattni SS, Walters JR (2011) New insights into bile acid malabsorption. Curr Gastroenterol Rep 13(5):418–425
Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006
Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295(2):G260–G272
Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, Brooks EM et al (2012) Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4):844–854 e4
Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M et al (2000) Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47(6):804–811
Camilleri M, Katzka DA (2012) Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 302(10):G1075–G1084
Shulman RJ, Eakin MN, Czyzewski DI, Jarrett M, Ou CN (2008) Increased gastrointestinal permeability and gut inflammation in children with functional abdominal pain and irritable bowel syndrome. J Pediatr 153(5):646–650
Wallon C, Yang PC, Keita AV, Ericson AC, McKay DM, Sherman PM et al (2008) Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57(1):50–58
Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martinez C et al (2012) Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol Motil 24(8):740–746, e348–e349
Barbara G, Cremon C, De Giorgio R, Dothel G, Zecchi L, Bellacosa L et al (2011) Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr Gastroenterol Rep 13(4):308–315
Dekel R, Drossman DA, Sperber AD (2013) The use of psychotropic drugs in irritable bowel syndrome. Expert Opin Investig Drugs 22(3):329–339
Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361(21):2066–2078
Bischoff SC (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205
Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN et al (2005) Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135(4):1295–1307
Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9(5–8):125–134
Meregnani J, Clarencon D, Vivier M, Peinnequin A, Mouret C, Sinniger V et al (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160(1–2):82–89
D’Haens GR, Panaccione R, Higgins PD, Vermeire S, Gassull M, Chowers Y et al (2011) The London Position Statement of the World Congress of Gastroenterology on Biological Therapy for IBD with the European Crohn’s and Colitis Organization: when to start, when to stop, which drug to choose, and how to predict response? Am J Gastroenterol 106(2):199–212
Tache Y, Bonaz B (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest 117(1):33–40
Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859
Czeh B, Perez-Cruz C, Fuchs E, Flugge G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behav Brain Res 190(1):1–13
Straub RH, Herfarth H, Falk W, Andus T, Scholmerich J (2002) Uncoupling of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis in inflammatory bowel disease? J Neuroimmunol 126(1–2):116–125
Kresse AE, Million M, Saperas E, Tache Y (2001) Colitis induces CRF expression in hypothalamic magnocellular neurons and blunts CRF gene response to stress in rats. Am J Physiol Gastrointest Liver Physiol 281(5):G1203–G1213
Million M, Tache Y, Anton P (1999) Susceptibility of Lewis and Fischer rats to stress-induced worsening of TNB-colitis: protective role of brain CRF. Am J Physiol 276(4 Pt 1):G1027–G1036
Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD et al (2000) Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci U S A 97(10):5645–5650
Gareau MG, Jury J, Yang PC, MacQueen G, Perdue MH (2006) Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr Res 59(1):83–88
Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25(10):3091–3098
O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214(1):71–88
Irwin MR (2008) Human psychoneuroimmunology: 20 years of discovery. Brain Behav Immun 22(2):129–139
Varghese AK, Verdu EF, Bercik P, Khan WI, Blennerhassett PA, Szechtman H et al (2006) Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 130(6):1743–1753
Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 104(4):1319–1324
Tache Y, Bernstein CN (2009) Evidence for the role of the brain-gut axis in inflammatory bowel disease: depression as cause and effect? Gastroenterology 136(7):2058–2061
Bernstein CN, Niazi N, Robert M, Mertz H, Kodner A, Munakata J et al (1996) Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain 66(2–3):151–161
Bernstein CN, Frankenstein UN, Rawsthorne P, Pitz M, Summers R, McIntyre MC (2002) Cortical mapping of visceral pain in patients with GI disorders using functional magnetic resonance imaging. Am J Gastroenterol 97(2):319–327
Verma-Gandhu M, Verdu EF, Bercik P, Blennerhassett PA, Al-Mutawaly N, Ghia JE et al (2007) Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 56(3):358–364
Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567
Suzuki K, Jayasena CN, Bloom SR (2012) Obesity and appetite control. Exp Diabetes Res 2012:824305
Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46
Jauregui-Lobera I (2013) Neuropsychology of eating disorders: 1995–2012. Neuropsychiatr Dis Treat 9:415–430
Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10(8):573–584
Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666
Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12(8):453–466
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer New York
About this chapter
Cite this chapter
Al Omran, Y., Aziz, Q. (2014). The Brain-Gut Axis in Health and Disease. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_6
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0897-4_6
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-0896-7
Online ISBN: 978-1-4939-0897-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)