The Brain-Gut Axis in Health and Disease

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 817)

Abstract

The interaction between the brain and the gut has been recognized for many centuries. This bidirectional interaction occurs via neural, immunological and hormonal routes, and is important not only in normal gastrointestinal function but also plays a significant role in shaping higher cognitive function such as our feelings and our subconscious decision-making. Therefore, it remains unsurprising that perturbations in normal signalling have been associated with a multitude of disorders, including inflammatory and functional gastrointestinal disorders, and eating disorders.

Keywords

Permeability Obesity Depression Attenuation Dopamine 

Abbreviations

5-HT

5-Hydroxytryptimaine

ACC

Anterior cingulate cortex

Ach

Acetylcholine

ANS

Autonomic nervous system

CCK1R

Cholecystokinin 1 receptor

CNS

Central nervous system

CRH

Corticotropin-releasing factor

DMN

Dorsal motor nucleus of the vagus

EMS

Emotional motor system

FGF19

Fibroblast growth factor 19

fMRI

Functional magnetic resonance imaging

GALT

Gut-associated lymphoid tissue

GI

Gastrointestinal

GLP1

Glucagon-like peptide-1

GPR

G-protein coupled receptor

HPA

Hypothalamic-pituitary-adrenal

IBD

Inflammatory bowel disease

IBS

Irritable bowel syndrome

KLB

Klotho beta

NF- κB

Nuclear factor κB

NPY

Neuropeptide Y

OFC

Orbitofrontal cortex

PAG

Periaqueductal grey

PFC

Prefrontal cortex

TNF-α

Tumor necrosis factor-α

α7nAChR

α7 nicotinic acetylcholine receptor

References

  1. 1.
    Almy TP (1989) Historical perspectives of functional bowel disease. In: Snape WJ (ed) Pathogenesis of functional bowel disease. Plenum, New York, pp 1–11CrossRefGoogle Scholar
  2. 2.
    James W (1884) What is an emotion? Mind 9:188–205CrossRefGoogle Scholar
  3. 3.
    Cannon WB (1909) The influence of emotional states on the functions of the alimentary canal. Am J Med Sci 137:480–487CrossRefGoogle Scholar
  4. 4.
    Pavlov I (1910) The work of digestive glands (English translation from Russian by W. H. Thompson). Griffin, LondonGoogle Scholar
  5. 5.
    Wolf S, Wolff HG (1943) Human gastric function: an experimental study of a man and his stomach. Oxford University, New YorkGoogle Scholar
  6. 6.
    Beaumont W (1959) Experiments and observations on the gastric juice and the physiology of digestion (Facsimile of the original publication of 1833). Dover, New YorkGoogle Scholar
  7. 7.
    Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219PubMedCrossRefGoogle Scholar
  8. 8.
    Bandler R, Keay KA (1996) The emotional motor system. In: Holstege G, Bandler R, Saper CB (eds) Progress in brain research. Elsevier, Amsterdam, pp 285–300Google Scholar
  9. 9.
    Holstege G, Bandler R, Saper CB (1996) The emotional motor system. Prog Brain Res 107:3–6PubMedCrossRefGoogle Scholar
  10. 10.
    Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47(6):861–869PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mason P (2011) From descending pain modulation to obesity via the medullary raphe. Pain 152(3 Suppl):S20–S24PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Valentino RJ, Miselis RR, Pavcovich LA (1999) Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 20(6):253–260PubMedCrossRefGoogle Scholar
  13. 13.
    Browning KN, Travagli RA (2011) Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci 161(1–2):6–13PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Martinez V, Tache Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12(31):4071–4088PubMedCrossRefGoogle Scholar
  15. 15.
    Welgan P, Meshkinpour H, Ma L (2000) Role of anger in antral motor activity in irritable bowel syndrome. Dig Dis Sci 45(2):248–251PubMedCrossRefGoogle Scholar
  16. 16.
    Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51PubMedGoogle Scholar
  17. 17.
    Furness JB (2006) The enteric nervous system. Blackwell, OxfordGoogle Scholar
  18. 18.
    Jaenig W (2006) Integrative action of the autonomic nervous system. Cambridge University Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638PubMedGoogle Scholar
  20. 20.
    Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314PubMedCrossRefGoogle Scholar
  21. 21.
    Lyte M, Vulchanova L, Brown DR (2011) Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343(1):23–32PubMedCrossRefGoogle Scholar
  22. 22.
    Stephens RL, Tache Y (1989) Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats. Am J Physiol 256(2 Pt 1):G377–G383PubMedGoogle Scholar
  23. 23.
    Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19(6):493–499PubMedCrossRefGoogle Scholar
  24. 24.
    Welgan P, Meshkinpour H, Beeler M (1988) Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94(5 Pt 1):1150–1156PubMedGoogle Scholar
  25. 25.
    Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract (1995) 34(7):31-2, 5-8, 41-2 passimGoogle Scholar
  26. 26.
    Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153(1–2):41–46PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G (1998) Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, Ca2 + -dependent mechanism in the enteroendocrine cell line STC-1. J Physiol 513(Pt 1):11–18PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ et al (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140(3):903–912PubMedCrossRefGoogle Scholar
  29. 29.
    Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132(1):397–414PubMedCrossRefGoogle Scholar
  30. 30.
    Rozengurt E, Sternini C (2007) Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7(6):557–562PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Clerc N, Furness JB (2004) Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol Motil 16(Suppl 1):24–27PubMedCrossRefGoogle Scholar
  32. 32.
    Keita AV, Soderholm JD (2010) The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 22(7):718–733PubMedCrossRefGoogle Scholar
  33. 33.
    Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257PubMedCrossRefGoogle Scholar
  34. 34.
    Gershon MD (2005) Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 39(5 Suppl 3):S184–S193PubMedCrossRefGoogle Scholar
  35. 35.
    de Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105(1):100–105PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP (2013) Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10:286–296Google Scholar
  37. 37.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510PubMedCrossRefGoogle Scholar
  39. 39.
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712PubMedCrossRefGoogle Scholar
  40. 40.
    Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420PubMedCrossRefGoogle Scholar
  41. 41.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826PubMedCrossRefGoogle Scholar
  42. 42.
    Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G et al (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37PubMedCrossRefGoogle Scholar
  43. 43.
    McDermott JR, Leslie FC, D’Amato M, Thompson DG, Grencis RK, McLaughlin JT (2006) Immune control of food intake: enteroendocrine cells are regulated by CD4+ T lymphocytes during small intestinal inflammation. Gut 55(4):492–497PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Mawe GM, Strong DS, Sharkey KA (2009) Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil 21(5):481–491PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R et al (2011) Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 17(8):1769–1777PubMedCrossRefGoogle Scholar
  46. 46.
    Bradley RM, Kim M (2007). In: Bradley RM (ed) The role of the nucleus of the solitary tract in gustatory processing. Taylor & Francis Group, LLC, Boca RatonGoogle Scholar
  47. 47.
    Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242PubMedCrossRefGoogle Scholar
  49. 49.
    Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A et al (2009) Functional organization of the human anterior insular cortex. Neurosci Lett 457(2):66–70PubMedCrossRefGoogle Scholar
  50. 50.
    Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534PubMedCrossRefGoogle Scholar
  51. 51.
    Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40(3):655–664PubMedCrossRefGoogle Scholar
  52. 52.
    Pepino MY, Mennella JA (2005) Sucrose-induced analgesia is related to sweet preferences in children but not adults. Pain 119(1–3):210–218PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Foo H, Mason P (2009) Analgesia accompanying food consumption requires ingestion of hedonic foods. J Neurosci 29(41):13053–13062PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13(1):24–28PubMedCrossRefGoogle Scholar
  55. 55.
    Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642PubMedCrossRefGoogle Scholar
  56. 56.
    Sikandar S, Dickenson AH (2012) Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care 6(1):17–26PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381PubMedCrossRefGoogle Scholar
  58. 58.
    Stengel A, Tache Y (2010) Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med (Maywood) 235(10):1168–1178CrossRefGoogle Scholar
  59. 59.
    Tillisch K, Labus JS (2011) Advances in imaging the brain-gut axis: functional gastrointestinal disorders. Gastroenterology 140(2):407–411 e1Google Scholar
  60. 60.
    Mayer EA, Tillisch K (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62:381–396PubMedCrossRefGoogle Scholar
  61. 61.
    Mayer EA (2008) Clinical practice. Irritable bowel syndrome. N Engl J Med 358(16):1692–1699PubMedCrossRefGoogle Scholar
  62. 62.
    Tornblom H, Van Oudenhove L, Sadik R, Abrahamsson H, Tack J, Simren M (2012) Colonic transit time and IBS symptoms: what’s the link? Am J Gastroenterol 107(5):754–760PubMedCrossRefGoogle Scholar
  63. 63.
    Ludidi S, Conchillo JM, Keszthelyi D, Koning CJ, Vanhoutvin SA, Lindsey PJ et al (2012) Does meal ingestion enhance sensitivity of visceroperception assessment in irritable bowel syndrome? Neurogastroenterol Motil 24(1):47–53, e3Google Scholar
  64. 64.
    Shepherd SJ, Parker FC, Muir JG, Gibson PR (2008) Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol 6(7):765–771PubMedCrossRefGoogle Scholar
  65. 65.
    Johnston I, Nolan J, Pattni SS, Walters JR (2011) New insights into bile acid malabsorption. Curr Gastroenterol Rep 13(5):418–425PubMedCrossRefGoogle Scholar
  66. 66.
    Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006PubMedCrossRefGoogle Scholar
  67. 67.
    Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295(2):G260–G272PubMedCrossRefGoogle Scholar
  68. 68.
    Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, Brooks EM et al (2012) Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4):844–854 e4Google Scholar
  69. 69.
    Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M et al (2000) Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47(6):804–811PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Camilleri M, Katzka DA (2012) Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 302(10):G1075–G1084PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Shulman RJ, Eakin MN, Czyzewski DI, Jarrett M, Ou CN (2008) Increased gastrointestinal permeability and gut inflammation in children with functional abdominal pain and irritable bowel syndrome. J Pediatr 153(5):646–650PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Wallon C, Yang PC, Keita AV, Ericson AC, McKay DM, Sherman PM et al (2008) Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57(1):50–58PubMedCrossRefGoogle Scholar
  73. 73.
    Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martinez C et al (2012) Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol Motil 24(8):740–746, e348–e349Google Scholar
  74. 74.
    Barbara G, Cremon C, De Giorgio R, Dothel G, Zecchi L, Bellacosa L et al (2011) Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr Gastroenterol Rep 13(4):308–315PubMedCrossRefGoogle Scholar
  75. 75.
    Dekel R, Drossman DA, Sperber AD (2013) The use of psychotropic drugs in irritable bowel syndrome. Expert Opin Investig Drugs 22(3):329–339PubMedCrossRefGoogle Scholar
  76. 76.
    Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361(21):2066–2078PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Bischoff SC (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205PubMedCrossRefGoogle Scholar
  78. 78.
    Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN et al (2005) Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135(4):1295–1307PubMedCrossRefGoogle Scholar
  79. 79.
    Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9(5–8):125–134PubMedCentralPubMedGoogle Scholar
  80. 80.
    Meregnani J, Clarencon D, Vivier M, Peinnequin A, Mouret C, Sinniger V et al (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160(1–2):82–89PubMedCrossRefGoogle Scholar
  81. 81.
    D’Haens GR, Panaccione R, Higgins PD, Vermeire S, Gassull M, Chowers Y et al (2011) The London Position Statement of the World Congress of Gastroenterology on Biological Therapy for IBD with the European Crohn’s and Colitis Organization: when to start, when to stop, which drug to choose, and how to predict response? Am J Gastroenterol 106(2):199–212PubMedCrossRefGoogle Scholar
  82. 82.
    Tache Y, Bonaz B (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest 117(1):33–40PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859PubMedCrossRefGoogle Scholar
  84. 84.
    Czeh B, Perez-Cruz C, Fuchs E, Flugge G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behav Brain Res 190(1):1–13PubMedCrossRefGoogle Scholar
  85. 85.
    Straub RH, Herfarth H, Falk W, Andus T, Scholmerich J (2002) Uncoupling of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis in inflammatory bowel disease? J Neuroimmunol 126(1–2):116–125PubMedCrossRefGoogle Scholar
  86. 86.
    Kresse AE, Million M, Saperas E, Tache Y (2001) Colitis induces CRF expression in hypothalamic magnocellular neurons and blunts CRF gene response to stress in rats. Am J Physiol Gastrointest Liver Physiol 281(5):G1203–G1213PubMedGoogle Scholar
  87. 87.
    Million M, Tache Y, Anton P (1999) Susceptibility of Lewis and Fischer rats to stress-induced worsening of TNB-colitis: protective role of brain CRF. Am J Physiol 276(4 Pt 1):G1027–G1036PubMedGoogle Scholar
  88. 88.
    Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD et al (2000) Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci U S A 97(10):5645–5650PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Gareau MG, Jury J, Yang PC, MacQueen G, Perdue MH (2006) Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr Res 59(1):83–88PubMedCrossRefGoogle Scholar
  90. 90.
    Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25(10):3091–3098PubMedCrossRefGoogle Scholar
  91. 91.
    O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214(1):71–88CrossRefGoogle Scholar
  92. 92.
    Irwin MR (2008) Human psychoneuroimmunology: 20 years of discovery. Brain Behav Immun 22(2):129–139PubMedCrossRefGoogle Scholar
  93. 93.
    Varghese AK, Verdu EF, Bercik P, Khan WI, Blennerhassett PA, Szechtman H et al (2006) Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 130(6):1743–1753PubMedCrossRefGoogle Scholar
  94. 94.
    Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 104(4):1319–1324PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Tache Y, Bernstein CN (2009) Evidence for the role of the brain-gut axis in inflammatory bowel disease: depression as cause and effect? Gastroenterology 136(7):2058–2061PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Bernstein CN, Niazi N, Robert M, Mertz H, Kodner A, Munakata J et al (1996) Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain 66(2–3):151–161PubMedCrossRefGoogle Scholar
  97. 97.
    Bernstein CN, Frankenstein UN, Rawsthorne P, Pitz M, Summers R, McIntyre MC (2002) Cortical mapping of visceral pain in patients with GI disorders using functional magnetic resonance imaging. Am J Gastroenterol 97(2):319–327PubMedCrossRefGoogle Scholar
  98. 98.
    Verma-Gandhu M, Verdu EF, Bercik P, Blennerhassett PA, Al-Mutawaly N, Ghia JE et al (2007) Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 56(3):358–364PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567PubMedCrossRefGoogle Scholar
  100. 100.
    Suzuki K, Jayasena CN, Bloom SR (2012) Obesity and appetite control. Exp Diabetes Res 2012:824305PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Jauregui-Lobera I (2013) Neuropsychology of eating disorders: 1995–2012. Neuropsychiatr Dis Treat 9:415–430PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10(8):573–584PubMedCrossRefGoogle Scholar
  104. 104.
    Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666PubMedGoogle Scholar
  105. 105.
    Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12(8):453–466PubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  1. 1.Centre for Digestive Diseases, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen MaryUniversity of LondonLondonUK
  2. 2.Bart’s and The London NHS Trust, Centre for GastroenterologyThe Wingate Institute of NeurogastroenterologyLondonUK

Personalised recommendations