Vagal Pathways for Microbiome-Brain-Gut Axis Communication

  • Paul Forsythe
  • John BienenstockEmail author
  • Wolfgang A. Kunze
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 817)


There is now strong evidence from animal studies that gut microorganism can activate the vagus nerve and that such activation plays a critical role in mediating effects on the brain and behaviour. The vagus appears to differentiate between non-pathogenic and potentially pathogenic bacteria even in the absence of overt inflammation and vagal pathways mediate signals that can induce both anxiogenic and anxiolytic effects, depending on the nature of the stimulus. Certain vagal signals from the gut can instigate an anti-inflammatory reflex with afferent signals to the brain activating an efferent response, releasing mediators including acetylcholine that, through an interaction with immune cells, attenuates inflammation. This immunomodulatory role of the vagus nerve may also have consequences for modulation of brain function and mood.

What is currently lacking are relevant data on the electrophysiology of the system. Certainly, important advances in our understanding of the gut-brain and microbiome- gut-brain axis will come from studies of how distinct microbial and nutritional stimuli activate the vagus and the nature of the signals transmitted to the brain that lead to differential changes in the neurochemistry of the brain and behaviour.

Understanding the induction and transmission of signals in the vagus nerve may have important implications for the development of microbial-or nutrition based therapeutic strategies for mood disorders.


Vagus Nerve Enteric Nervous System Vagal Nerve Stimulation Vagal Afferents Renal Sympathetic Nerve Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Adenosine triphosphate




Central nervous system


Corticotropin-releasing factor


Docosahexaenoic acid


Dorsal root ganglia


Dextran sodium sulfate


Enteric nervous system


Eicosapentaenoic acid


Food and Drug Administration


Gamma-aminobutyric acid




Glucagon-like peptide-1




Inflammatory bowel disease


Intraganglionic laminar vagal afferent ending


Calcium dependent potassium channel


Intrinsic primary afferent neuron




Major depressive disorder


Messenger RNA


Nucleus of the solitary tract




Polyunsaturated fatty acids


Peptide YY


Tumor necrosis factor


  1. 1.
    Browning KN, Mendelowitz D (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes?: II. Integration of afferent signaling from the viscera by the nodose ganglia. Am J Physiol Gastrointest Liver Physiol 284(1):G8–G14, PubMed PMID: 12488231PubMedGoogle Scholar
  2. 2.
    Blackshaw LA, Brookes SJ, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19(Suppl 1):1–19, PubMed PMID: 17280582PubMedCrossRefGoogle Scholar
  3. 3.
    Mei N (1983) Recent studies on intestinal vagal afferent innervation. Functional implications. J Auton Nerv Syst 9(1):199–206, PubMed PMID: 6363498PubMedCrossRefGoogle Scholar
  4. 4.
    Mei N (1985) Intestinal chemosensitivity. Physiol Rev 65(2):211–237, PubMed PMID: 2858893PubMedGoogle Scholar
  5. 5.
    Wang FB, Powley TL (2007) Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation. Cell Tissue Res 329(2):221–230, PubMed PMID: 17453246PubMedCrossRefGoogle Scholar
  6. 6.
    Li Y (2007) Sensory signal transduction in the vagal primary afferent neurons. Curr Med Chem 14(24):2554–2563, PubMed PMID: 17979708PubMedCrossRefGoogle Scholar
  7. 7.
    Berthoud HR, Lynn PA, Blackshaw LA (2001) Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am J Physiol Regul Integr Comp Physiol 280(5):R1371–R1381, PubMed PMID: 11294756PubMedGoogle Scholar
  8. 8.
    Craig AD (2009) How do you feel now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70, PubMed PMID: 19096369PubMedCrossRefGoogle Scholar
  9. 9.
    Crucian GP, Hughes JD, Barrett AM, Williamson DJ, Bauer RM, Bowers D et al (2000) Emotional and physiological responses to false feedback. Cortex 36(5):623–647, PubMed PMID: 11195911PubMedCrossRefGoogle Scholar
  10. 10.
    Zagon A (2001) Does the vagus nerve mediate the sixth sense? Trends Neurosci 24(11):671–673, PubMed PMID: 11672813PubMedCrossRefGoogle Scholar
  11. 11.
    Dantzer R, Konsman JP, Bluthe RM, Kelley KW (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85(1–3):60–65, PubMed PMID: 11189027PubMedCrossRefGoogle Scholar
  12. 12.
    Luheshi GN, Bluthe RM, Rushforth D, Mulcahy N, Konsman JP, Goldbach M et al (2000) Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. Auton Neurosci 85(1–3):127–132, PubMed PMID: 11189019PubMedCrossRefGoogle Scholar
  13. 13.
    Konsman JP, Luheshi GN, Bluthe RM, Dantzer R (2000) The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci 12(12):4434–4446, PubMed PMID: 11122354PubMedCrossRefGoogle Scholar
  14. 14.
    Hansen MK, O’Connor KA, Goehler LE, Watkins LR, Maier SF (2001) The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol 280(4):R929–R934, PubMed PMID: 11247812PubMedGoogle Scholar
  15. 15.
    Bluthe RM, Walter V, Parnet P, Laye S, Lestage J, Verrier D et al (1994) Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III 317(6):499–503, PubMed PMID: 7987701PubMedGoogle Scholar
  16. 16.
    Laye S, Bluthe RM, Kent S, Combe C, Medina C, Parnet P et al (1995) Subdiaphragmatic vagotomy blocks induction of IL-1 beta mRNA in mice brain in response to peripheral LPS. Am J Physiol 268(5 Pt 2):R1327–R1331, PubMed PMID: 7771597PubMedGoogle Scholar
  17. 17.
    Bret-Dibat JL, Bluthe RM, Kent S, Kelley KW, Dantzer R (1995) Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun 9(3):242–246, PubMed PMID: 8590821PubMedCrossRefGoogle Scholar
  18. 18.
    Krahl SE, Senanayake SS, Pekary AE, Sattin A (2004) Vagus nerve stimulation (VNS) is effective in a rat model of antidepressant action. J Psychiatr Res 38(3):237–240. PubMed PMID: 15003428Google Scholar
  19. 19.
    Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29(4–5):547–569, PubMed PMID: 15893822PubMedCrossRefGoogle Scholar
  20. 20.
    Cunningham JT, Mifflin SW, Gould GG, Frazer A (2008) Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by Vagal nerve stimulation. Neuropsychopharmacology 33(8):1884–1895, PubMed PMID: 17957222PubMedCrossRefGoogle Scholar
  21. 21.
    Biggio F, Gorini G, Utzeri C, Olla P, Marrosu F, Mocchetti I et al (2009) Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychopharmacol 12(9):1209–1221, PubMed PMID: 19309534. Pubmed Central PMCID: 2879889PubMedCentralPubMedGoogle Scholar
  22. 22.
    Walsh SP, Kling MA (2004) VNS and depression: current status and future directions. Expert Rev Med Devices 1(1):155–160, PubMed PMID: 16293018PubMedCrossRefGoogle Scholar
  23. 23.
    Martin JL, Martin-Sanchez E (2012) Systematic review and meta-analysis of vagus nerve stimulation in the treatment of depression: variable results based on study designs. Eur Psychiatry 27(3):147–155, PubMed PMID: 22137776PubMedCrossRefGoogle Scholar
  24. 24.
    Rizvi SJ, Donovan M, Giacobbe P, Placenza F, Rotzinger S, Kennedy SH (2011) Neurostimulation therapies for treatment resistant depression: a focus on vagus nerve stimulation and deep brain stimulation. Int Rev Psychiatry 23(5):424–436, PubMed PMID: 22200132PubMedCrossRefGoogle Scholar
  25. 25.
    Miao FJ, Green PG, Levine JD (2004) Mechanosensitive duodenal afferents contribute to vagal modulation of inflammation in the rat. J Physiol 554(Pt 1):227–235, PubMed PMID: 14678504. Pubmed Central PMCID: 1664747PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462, PubMed PMID: 10839541PubMedCrossRefGoogle Scholar
  27. 27.
    Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131(4):1122–1130, PubMed PMID: 17030182PubMedCrossRefGoogle Scholar
  28. 28.
    O’Mahony C, van der Kleij H, Bienenstock J, Shanahan F, O’Mahony L (2009) Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am J Physiol Regul Integr Comp Physiol 297(4):R1118–R1126, PubMed PMID: 19675277. Epub 2009 Aug 12PubMedCrossRefGoogle Scholar
  29. 29.
    Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 24(2):316–323, PubMed PMID: 19887104, Epub 2009 Nov 1PubMedCrossRefGoogle Scholar
  30. 30.
    Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052):98–101, PubMed PMID: 21921156PubMedCrossRefGoogle Scholar
  31. 31.
    Reardon C, Duncan GS, Brustle A, Brenner D, Tusche MW, Olofsson PS et al (2013) Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proc Natl Acad Sci U S A 110(4):1410–1415, PubMed PMID: 23297238. Pubmed Central PMCID: 3557089PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Connor TJ, Leonard BE (1998) Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 62(7):583–606, PubMed PMID: 9472719PubMedCrossRefGoogle Scholar
  33. 33.
    Li M, Soczynska JK, Kennedy SH (2011) Inflammatory biomarkers in depression: an opportunity for novel therapeutic interventions. Curr Psychiatry Rep 13(5):316–320, PubMed PMID: 21671010PubMedCrossRefGoogle Scholar
  34. 34.
    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741, PubMed PMID: 19150053. Pubmed Central PMCID: 2680424PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Dinan TG (2009) Inflammatory markers in depression. Curr Opin Psychiatry 22(1):32–36, PubMed PMID: 19122532PubMedCrossRefGoogle Scholar
  36. 36.
    Capuron L, Dantzer R (2003) Cytokines and depression: the need for a new paradigm. Brain Behav Immun 17(Suppl 1):S119–S124, PubMed PMID: 12615197PubMedCrossRefGoogle Scholar
  37. 37.
    Hernandez ME, Mendieta D, Martinez-Fong D, Loria F, Moreno J, Estrada I et al (2008) Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur Neuropsychopharmacol 18(12):917–924, PubMed PMID: 18805677PubMedCrossRefGoogle Scholar
  38. 38.
    O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41(3–4):326–331. PubMed PMID: 16870211Google Scholar
  39. 39.
    De Herdt V, Bogaert S, Bracke KR, Raedt R, De Vos M, Vonck K et al (2009) Effects of vagus nerve stimulation on pro- and anti-inflammatory cytokine induction in patients with refractory epilepsy. J Neuroimmunol 214(1–2):104–108, PubMed PMID: 19608283PubMedCrossRefGoogle Scholar
  40. 40.
    Majoie HJ, Rijkers K, Berfelo MW, Hulsman JA, Myint A, Schwarz M et al (2011) Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation 18(1):52–56, PubMed PMID: 20639683PubMedCrossRefGoogle Scholar
  41. 41.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323, PubMed PMID: 19343057PubMedCrossRefGoogle Scholar
  42. 42.
    Raison CL, Lowry CA, Rook GA (2010) Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry 67(12):1211–1224, PubMed PMID: 21135322. Epub 2010/12/08. engPubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 160(1):1–9, PubMed PMID: 20415844. Pubmed Central PMCID: 2841828PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Strachan DP (2000) Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax 55(Suppl 1):S2–S10, PubMed PMID: 10943631, Pubmed Central PMCID: 1765943PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Godbout JP, Glaser R (2006) Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J Neuroimmune Pharmacol 1(4):421–427, PubMed PMID: 18040814PubMedCrossRefGoogle Scholar
  46. 46.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275, PubMed PMID: 15133062, Pubmed Central PMCID: 1664925, Epub 2004 May 7PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528, PubMed PMID: 17339238, Pubmed Central PMCID: 2095679, Epub 2007/03/07. engPubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055, PubMed PMID: 21876150, Pubmed Central PMCID: 3179073, Epub 2011/08/31. engPubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D (2001) Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 281(4):G907–G915, PubMed PMID: 11557510PubMedGoogle Scholar
  50. 50.
    Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202(8):1023–1029, PubMed PMID: 16216887, Pubmed Central PMCID: 2213207PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lubbers T, de Haan JJ, Luyer MD, Verbaeys I, Hadfoune M, Dejong CH et al (2010) Cholecystokinin/cholecystokinin-1 receptor-mediated peripheral activation of the afferent vagus by enteral nutrients attenuates inflammation in rats. Ann Surg 252(2):376–382, PubMed PMID: 20585240PubMedCrossRefGoogle Scholar
  52. 52.
    Billman GE (2012) Effect of dietary omega-3 polyunsaturated Fatty acids on heart rate and heart rate variability in animals susceptible or resistant to ventricular fibrillation. Front Physiol 3:71, PubMed PMID: 22470351, Pubmed Central PMCID: 3313477PubMedCentralPubMedGoogle Scholar
  53. 53.
    Christensen JH (2011) Omega-3 polyunsaturated Fatty acids and heart rate variability. Front Physiol 2:84, PubMed PMID: 22110443, Pubmed Central PMCID: 3217222PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Huston JM, Tracey KJ (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 269(1):45–53, PubMed PMID: 21158977PubMedCrossRefGoogle Scholar
  55. 55.
    Thayer JF, Brosschot JF (2005) Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology 30(10):1050–1058, PubMed PMID: 16005156PubMedCrossRefGoogle Scholar
  56. 56.
    Weber CS, Thayer JF, Rudat M, Wirtz PH, Zimmermann-Viehoff F, Thomas A et al (2010) Low vagal tone is associated with impaired post stress recovery of cardiovascular, endocrine, and immune markers. Eur J Appl Physiol 109(2):201–211, PubMed PMID: 20052593PubMedCrossRefGoogle Scholar
  57. 57.
    Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T (2007) RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 13(3–4):178–184. PubMed PMID: 17592552. Pubmed Central PMCID: 1892756Google Scholar
  58. 58.
    Eisner F, Jacob P, Frick JS, Feilitzsch M, Geisel J, Mueller MH et al (2011) Immunonutrition with long-chain fatty acids prevents activation of macrophages in the gut wall. J Gastrointest Surg 15(5):853–859, PubMed PMID: 21384238PubMedCrossRefGoogle Scholar
  59. 59.
    Long H, Yang H, Lin Y, Situ D, Liu W (2013) Fish oil-supplemented parenteral nutrition in patients following esophageal cancer surgery: effect on inflammation and immune function. Nutr Cancer 65(1):71–75, PubMed PMID: 23368915PubMedCrossRefGoogle Scholar
  60. 60.
    Lubbers T, Kox M, de Haan JJ, Greve JW, Pompe JC, Ramakers BP et al (2013) Continuous administration of enteral lipid- and protein-rich nutrition limits inflammation in a human endotoxemia model. Crit Care Med 41(5):1258–1265, PubMed PMID: 23388517PubMedCrossRefGoogle Scholar
  61. 61.
    Tracey KJ (2005) Fat meets the cholinergic antiinflammatory pathway. J Exp Med 202(8):1017–1021, PubMed PMID: 16230472, Pubmed Central PMCID: 2213208PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Huang SY, Yang HT, Chiu CC, Pariante CM, Su KP (2008) Omega-3 fatty acids on the forced-swimming test. J Psychiatr Res 42(1):58–63, PubMed PMID: 17070845PubMedCrossRefGoogle Scholar
  63. 63.
    Jiang LH, Liang QY, Shi Y (2012) Pure docosahexaenoic acid can improve depression behaviors and affect HPA axis in mice. Eur Rev Med Pharmacol Sci 16(13):1765–1773, PubMed PMID: 23208960PubMedGoogle Scholar
  64. 64.
    Jazayeri S, Tehrani-Doost M, Keshavarz SA, Hosseini M, Djazayery A, Amini H et al (2008) Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry 42(3):192–198, PubMed PMID: 18247193PubMedCrossRefGoogle Scholar
  65. 65.
    Jazayeri S, Keshavarz SA, Tehrani-Doost M, Djalali M, Hosseini M, Amini H et al (2010) Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1beta and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res 178(1):112–115, PubMed PMID: 20466437PubMedCrossRefGoogle Scholar
  66. 66.
    Takeuchi T, Iwanaga M, Harada E (2003) Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res 964(1):136–143, PubMed PMID: 12573522PubMedCrossRefGoogle Scholar
  67. 67.
    Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139, PubMed PMID: 21988661, Pubmed Central PMCID: 3413724, Epub 2011/10/13. engPubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Gomes NGM, Campos MG, Órfão JMC, Ribeiro CAF (2009) Plants with neurobiological activity as potential targets for drug discovery. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1372–1389Google Scholar
  69. 69.
    Ekblad E, Winther C, Ekman R, Hakanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20(1):169–188, PubMed PMID: 2436086PubMedCrossRefGoogle Scholar
  70. 70.
    Keast JR, Furness JB, Costa M (1984) Origins of peptide and norepinephrine nerves in the mucosa of the guinea pig small intestine. Gastroenterology 86(4):637–644, PubMed PMID: 6199254, Epub 1984/04/01. engPubMedGoogle Scholar
  71. 71.
    Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X, Forsythe P et al (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13(8B):2261–2270, PubMed PMID: 19210574PubMedCrossRefGoogle Scholar
  72. 72.
    Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA (2013) Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun 4:1465, PubMed PMID: 23403566PubMedCrossRefGoogle Scholar
  73. 73.
    Wang B, Mao YK, Diorio C, Wang L, Huizinga JD, Bienenstock J et al (2010) Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol Motil 22(1):98–107, e33. PubMed PMID: 19788711Google Scholar
  74. 74.
    Wu RY, Pasyk M, Wang B, Forsythe P, Bienenstock J, Mao YK et al (2013) Spatiotemporal maps reveal regional differences in the effects on gut motility for Lactobacillus reuteri and rhamnosus strains. Neurogastroenterol Motil 25(3):e205–e214, PubMed PMID: 23316914PubMedCrossRefGoogle Scholar
  75. 75.
    McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25(2):183–e88, PubMed PMID: 23181420PubMedCrossRefGoogle Scholar
  76. 76.
    Massi M, Ioan P, Budriesi R, Chiarini A, Vitali B, Lammers KM et al (2006) Effects of probiotic bacteria on gastrointestinal motility in guinea-pig isolated tissue. World J Gastroenterol 12(37):5987–5994. PubMed PMID: 17009397. engGoogle Scholar
  77. 77.
    Wang B, Mao YK, Diorio C, Pasyk M, Wu RY, Bienenstock J et al (2010) Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J 24(10):4078–4088, PubMed PMID: 20519636PubMedCrossRefGoogle Scholar
  78. 78.
    Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534(Pt 1):255–268, PubMed PMID: 11433006PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 34(1–2):1–26, PubMed PMID: 11086184, Epub 2000/11/22. engPubMedCrossRefGoogle Scholar
  80. 80.
    Powley TL, Spaulding RA, Haglof SA (2011) Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 519(4):644–660, PubMed PMID: 21246548PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Powley TL, Phillips RJ (2002) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract. Am J Physiol Gastrointest Liver Physiol 283(6):G1217–G1225. PubMed PMID: 12388183. engGoogle Scholar
  82. 82.
    Hara H, Haga S, Aoyama Y, Kiriyama S (1999) Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129(5):942–948Google Scholar
  83. 83.
    Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153(1–2):41–46PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Bertrand P (2009) The cornucopia of intestinal chemosensory transduction. Front Neurosci 3:48, PubMed PMID: 20582275PubMedCentralPubMedGoogle Scholar
  85. 85.
    Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y, Nagai K (2005) Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 389(2):109–114, PubMed PMID: 16118039, Epub 2005/08/25. engPubMedCrossRefGoogle Scholar
  86. 86.
    Kamiya T, Wang L, Forsythe P, Goettsche G, Mao Y, Wang Y et al (2006) Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague–Dawley rats. Gut 55(2):191–196, PubMed PMID: 16361309, Pubmed Central PMCID: 1856513, Epub 2005/12/20. engPubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Kunze WA, Foster JA, Mao Y, Ma XJ, Bienenstock J (eds) (2007) Lactobacillus sp (LB) probiotic congestion by rats blocks memory in DRG neurons of repeated colorectal distensions. In: Annual Meeting the Society for Neuroscience, San Diego Convention Center, California, Society for Neuroscience, 12–16 November 2007Google Scholar
  88. 88.
    Menetrey D, Basbaum AI (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255(3):439–450, PubMed PMID: 3819024, Epub 1987/01/15. engPubMedCrossRefGoogle Scholar
  89. 89.
    Menetrey D, De Pommery J (1991) Origins of spinal ascending pathways that reach central areas involved in visceroception and visceronociception in the rat. Eur J Neurosci 3(3):249–259, PubMed PMID: 12106203, Epub 1991/01/01. EngPubMedCrossRefGoogle Scholar
  90. 90.
    Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34, PubMed PMID: 20353764, Pubmed Central PMCID: PMC2909454, Epub 2010/04/01. engPubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Perez-Burgos A, Wang B, Mao YK, Mistry B, Neufeld KA, Bienenstock J et al (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 304(2):G211–G220, PubMed PMID: 23139216PubMedCrossRefGoogle Scholar
  92. 92.
    Wang X, Wang BR, Zhang XJ, Xu Z, Ding YQ, Ju G (2002) Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol 8(3):540–545, PubMed PMID: 12046088PubMedGoogle Scholar
  93. 93.
    Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4):334–344, PubMed PMID: 15944073, Epub 2005/06/10. engPubMedCrossRefGoogle Scholar
  94. 94.
    Cryan JF, Slattery DA (2010) GABAB receptors and depression. Current status. Adv Pharmacol 58:427–451, PubMed PMID: 20655491PubMedCrossRefGoogle Scholar
  95. 95.
    Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF (2007) Specific roles of GABA(B(1)) receptor isoforms in cognition. Behav Brain Res 181(1):158–162, PubMed PMID: 17498817, Pubmed Central PMCID: 2980901, Epub 2007/05/15. engPubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Jacobson LH, Bettler B, Kaupmann K, Cryan JF (2007) Behavioral evaluation of mice deficient in GABA(B(1)) receptor isoforms in tests of unconditioned anxiety. Psychopharmacology (Berl) 190(4):541–553, PubMed PMID: 17171558CrossRefGoogle Scholar
  97. 97.
    Jacob TC, Michels G, Silayeva L, Haydon J, Succol F, Moss SJ (2012) Benzodiazepine treatment induces subtype-specific changes in GABA(A) receptor trafficking and decreases synaptic inhibition. Proc Natl Acad Sci U S A 109(45):18595–18600, PubMed PMID: 23091016, Pubmed Central PMCID: 3494928PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschoten M, Brummer RJ et al (2011) Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A 108(Suppl 1):4562–4569, PubMed PMID: 20823239, Pubmed Central PMCID: 3063594, Epub 2010/09/09. engPubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141(2):599–609, e1–3. PubMed PMID: 21683077Google Scholar
  100. 100.
    van der Kleij H, O’Mahony C, Shanahan F, O’Mahony L, Bienenstock J (2008) Protective effects of Lactobacillus rhamnosus [corrected] and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am J Physiol Regul Integr Comp Physiol 295(4):R1131–R1137, PubMed PMID: 18667710, Epub 2008/08/01. engPubMedCrossRefGoogle Scholar
  101. 101.
    Blackshaw LA, Grundy D (1993) Effects of 5-hydroxytryptamine (5-HT) on the discharge of vagal mechanoreceptors and motility in the upper gastrointestinal tract of the ferret. J Auton Nerv Syst 45(1):51–59, PubMed PMID: 8227964PubMedCrossRefGoogle Scholar
  102. 102.
    Eastwood C, Maubach K, Kirkup AJ, Grundy D (1998) The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci Lett 254(3):145–148, PubMed PMID: 10214978PubMedCrossRefGoogle Scholar
  103. 103.
    Hardcastle J, Hardcastle PT, Sanford PA (1978) Effect of actively transported hexoses on afferent nerve discharge from rat small intestine. J Physiol 285:71–84, PubMed PMID: 745132, Pubmed Central PMCID: 1281743PubMedCentralPubMedGoogle Scholar
  104. 104.
    Liu CY, Mueller MH, Rogler G, Grundy D, Kreis ME (2009) Differential afferent sensitivity to mucosal lipopolysaccharide from Salmonella typhimurium and Escherichia coli in the rat jejunum. Neurogastroenterol Motil 21(12):1335–e129, PubMed PMID: 19614870PubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Paul Forsythe
    • 1
  • John Bienenstock
    • 2
    Email author
  • Wolfgang A. Kunze
    • 3
  1. 1.Medicine, McMaster UniversityHamiltonCanada
  2. 2.Pathology and Molecular Medicine, Brain Body InstituteMcMaster University, St. Joseph’s HealthcareHamiltonCanada
  3. 3.Psychiatry and Behavioural NeuroscienceSt. Joseph HealthcareHamiltonCanada

Personalised recommendations