Skip to main content

Utilizing “Omics” Tools to Study the Complex Gut Ecosystem

Part of the Advances in Experimental Medicine and Biology book series (MICENDO,volume 817)

Abstract

In a healthy gut, the immune system tolerates a diverse microbial commensal community avoiding inappropriate inflammation responses and minimizing the presence of pathogens. When the balance between host and microbes is disrupted, risk for disease increases. There is mounting evidence that microbial dysbiosis is a substantial risk factor for common gut diseases including IBS, IBD and colorectal cancer. Understanding this dysbiosis is challenging because of the extraordinary complexity of the gut ecosystem and the tremendous variability between healthy individuals in the taxa that make up the human microbiome. Advances in technology, especially sequencing technology, are beginning to allow for a full description of this complexity. In this review, we consider how new “omics” technology can be applied to the study of the gut ecosystem in human and animal models with special consideration given to factors that should be considered in the design of experiments and clinical trials.

Keywords

  • Microbial Community
  • Fecal Sample
  • Clone Library
  • Sanger Sequencing
  • Human Microbiome

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0897-4_2
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0897-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 2.1

Abbreviations

ATP:

Adenosine triphosphate

cDNA:

Complementary DNA

DNA:

Deoxyribonucleic acid

FDR:

False Discovery Rate

IBD:

Inflammatory Bowel Disease

IBS:

Irritable Bowel Syndrome

OUT:

Operational Taxonomic Units

PCR:

Polymerase chain reaction

RNA:

Ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

References

  1. Manichanh C, Borruel N, Casellas F, Guarner F (2012) The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 9:599–608

    CAS  PubMed  CrossRef  Google Scholar 

  2. Öhman L, Simrén M (2013) Intestinal microbiota and its role in irritable bowel syndrome (IBS). Curr Gastroenterol Rep 15:1–7

    CrossRef  Google Scholar 

  3. Talley NJ, Fodor AA (2011) Bugs, stool, and the irritable bowel syndrome: too much is as bad as too little? Gastroenterology 141:1555–1559

    PubMed  CrossRef  Google Scholar 

  4. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  5. Zhu Q, Gao R, Wu W, Qin H (2013) The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 34:1285–1300

    PubMed  CrossRef  Google Scholar 

  6. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Google Scholar 

  8. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221

    Google Scholar 

  9. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH et al (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140:976–986

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  10. Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7:e34242

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  11. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  12. Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L et al (2012) Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 6:1858–1868

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  13. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    CAS  PubMed  CrossRef  Google Scholar 

  14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  CrossRef  Google Scholar 

  16. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    CAS  PubMed  CrossRef  Google Scholar 

  17. Yang X, Xie L, Li Y, Wei C (2009) More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS One 4:e6074

    PubMed Central  PubMed  CrossRef  Google Scholar 

  18. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  19. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548

    CAS  PubMed  CrossRef  Google Scholar 

  20. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed Central  PubMed  CrossRef  Google Scholar 

  21. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  23. Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD et al (2010) Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5:e15406

    PubMed Central  PubMed  CrossRef  Google Scholar 

  24. Schatz MC, Langmead B, Salzberg SL (2010) Cloud computing and the DNA data race. Nat Biotechnol 28:691–693

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  25. Dai L, Gao X, Guo Y, Xiao J, Zhang Z (2012) Bioinformatics clouds for big data manipulation. Biol Direct 7:43

    PubMed Central  PubMed  CrossRef  Google Scholar 

  26. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    CAS  PubMed  CrossRef  Google Scholar 

  27. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  28. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    CAS  PubMed  CrossRef  Google Scholar 

  29. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36:e120

    PubMed Central  PubMed  CrossRef  Google Scholar 

  30. Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87

    CAS  PubMed  CrossRef  Google Scholar 

  31. Hamp TJ, Jones WJ, Fodor AA (2009) Effects of experimental choices and analysis noise on surveys of the “Rare Biosphere”. Appl Environ Microbiol 75:3263–3270

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  32. Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B et al (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:e130

    PubMed Central  PubMed  CrossRef  Google Scholar 

  33. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  34. Huse S, Huber J, Morrison H, Sogin M, Welch D (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    PubMed Central  PubMed  CrossRef  Google Scholar 

  35. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  36. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  37. McCafferty J, Fodor A (2013) Human microbiome analysis via the 16s rRNA gene. In: Bishop OT (ed) Bioinformatics and data analysis in microbiology. Caister Academic Press, Norfolk

    Google Scholar 

  38. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci 104:979–984

    PubMed Central  PubMed  CrossRef  Google Scholar 

  39. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK et al (2010) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687

    Google Scholar 

  40. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  41. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  42. Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol 10:591–592

    CAS  PubMed  CrossRef  Google Scholar 

  43. Koren O, Knights D, Gonzalez A, Waldron L, Segata N et al (2013) A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 9:e1002863

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  44. Wu G, Lewis J, Hoffmann C, Chen Y-Y, Knight R et al (2010) Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol 10:206

    PubMed Central  PubMed  CrossRef  Google Scholar 

  45. Lautenbach E, Harris AD, Perencevich EN, Nachamkin I, Tolomeo P et al (2005) Test characteristics of perirectal and rectal swab compared to stool sample for detection of fluoroquinolone-resistant Escherichia coli in the gastrointestinal tract. Antimicrob Agents Chemother 49:798–800

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  46. Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A et al (2013) Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 9:e1003107

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  47. Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333:101–104

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  48. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1131

    PubMed  CrossRef  Google Scholar 

  49. Hildebrand F, Nguyen TLA, Brinkman B, Yunta R, Cauwe B et al (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4

    PubMed Central  PubMed  CrossRef  Google Scholar 

  50. Ma BW, Bokulich NA, Castillo PA, Kananurak A, Underwood MA et al (2012) Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PLoS One 7:e47416

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  51. Gillilland MG, Erb-Downward JR, Bassis CM, Shen MC, Toews GB et al (2012) Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl Environ Microbiol 78:2359–2366

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  52. Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I et al (2012) Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 209:1445–1456

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  53. McCafferty J, Marcus M, Gharaibeh RZ, Arthur JC, Perez-Chanona E et al (2013) Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J 7:2116–2125

    Google Scholar 

  54. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  55. Schnoes AM, Ream DC, Thorman AW, Babbitt PC, Friedberg I (2013) Biases in the experimental annotations of protein function and their effect on our understanding of protein function space. PLoS Comput Biol 9:e1003063

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  56. Giannoukos G, Ciulla D, Huang K, Haas B, Izard J et al (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:r23

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  57. Cantarel BL, Erickson AR, VerBerkmoes NC, Erickson BK, Carey PA et al (2011) Strategies for metagenomic-guided whole-community proteomics of complex microbial environments. PLoS One 6:e27173

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  58. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M et al (2008) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    PubMed  CrossRef  Google Scholar 

  59. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF et al (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One 7:e49138

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  60. Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713

    CAS  PubMed  CrossRef  Google Scholar 

  61. Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7:198–210

    CAS  PubMed  CrossRef  Google Scholar 

  62. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A et al (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A 108:6252–6257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Fodor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Fodor, A. (2014). Utilizing “Omics” Tools to Study the Complex Gut Ecosystem. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_2

Download citation