Applications of Molecular Small-Animal Imaging in Oncology

Chapter

Abstract

Cancer research involves understanding biological events on a micromolecular level (e.g., gene expression) as well as macromolecular level (e.g., tumor phenotype). In vitro studies of cancer cells have identified many genetic, epigenetic, proteomic, and signalling pathway changes that contribute to the ability of the cancer cell to survive, grow uncontrollably, and escape death. In vivo studies of tumor cells serve to understand how the tumor phenotype is affected by these changes and interactions with the host environment. Small animal models of cancer have been routinely used to understand cancer biology, and molecular imaging provides a tool to observe these biological events non-invasively in vivo. Applications of molecular imaging for cancer detection, staging, and therapy in small animals are described in this chapter with a focus on molecular imaging probe design for targeting cancer, and use of imaging to develop, target and deliver cancer therapeutics. Preclinical in vivo molecular imaging research in small animals is and will continue to be an integral part of clinical oncology practices.

Keywords

Iodine Radionuclide Sarcoma Paclitaxel Integrin 

Notes

Acknowledgments

This work was supported by funding from the Radiological Society of North America (RSNA; grant RSD0809), and the National Institutes of Health/National Cancer Institute (NIH/NCI; grants CA139279-01A1, CA114747, and CA118681).

References

  1. 1.
    Delcuve G. P., Rastegar M., and Davie J. R., Epigenetic control. J Cell Physiol 219:243-50 (2009)PubMedGoogle Scholar
  2. 2.
    Osaki M., Takeshita F., and Ochiya T., MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers 13:658-70 (2008)PubMedGoogle Scholar
  3. 3.
    Ischenko I., Seeliger H., Schaffer M., et al., Cancer stem cells: How can we target them? Curr Med Chem 15:3171-84 (2008)PubMedGoogle Scholar
  4. 4.
    Polyak K., Haviv I., and Campbell I. G., Co-evolution of tumor cells and their microenvironment. Trends Genet 25:30-8 (2009)PubMedGoogle Scholar
  5. 5.
    Hanahan D. and Weinberg R. A., The hallmarks of cancer. Cell 100:57-70 (2000)PubMedGoogle Scholar
  6. 6.
    Benaron D. A., The future of cancer imaging. Cancer Metastasis Rev 21:45-78 (2002)PubMedGoogle Scholar
  7. 7.
    Pomper M. G., Translational molecular imaging for cancer. Cancer Imaging 5 Spec No A:S16-26 (2005)Google Scholar
  8. 8.
    Weissleder R., Molecular imaging in cancer. Science 312:1168-71 (2006)PubMedGoogle Scholar
  9. 9.
    Wong F. C. and Kim E. E., A review of molecular imaging studies reaching the clinical stage. Eur J Radiol 70:205-11 (2009)PubMedGoogle Scholar
  10. 10.
    Gambhir S. S., Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683-93 (2002)PubMedGoogle Scholar
  11. 11.
    Ben-Haim S. and Ell P., 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50:88-99 (2009)PubMedGoogle Scholar
  12. 12.
    Massoud T. F. and Gambhir S. S., Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev 17:545-80 (2003)PubMedGoogle Scholar
  13. 13.
    Harisinghani M. G., Barentsz J., Hahn P. F., et al., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491-9 (2003)PubMedGoogle Scholar
  14. 14.
    Mather S., Molecular imaging with bioconjugates in mouse models of cancer. Bioconjug Chem 20:631-43 (2009)PubMedGoogle Scholar
  15. 15.
    Kerbel R. S., Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved. Cancer Biol Ther 2:S134-9 (2003)PubMedGoogle Scholar
  16. 16.
    Tang Z. Y., Sun F. X., Tian J., et al., Metastatic human hepatocellular carcinoma models in nude mice and cell line with metastatic potential. World J Gastroenterol 7:597-601 (2001)PubMedGoogle Scholar
  17. 17.
    Finn R. S., Bentley G., Britten C. D., et al., Targeting vascular endothelial growth factor with the monoclonal antibody bevacizumab inhibits human hepatocellular carcinoma cells growing in an orthotopic mouse model. Liver Int 29:284-90 (2009)PubMedGoogle Scholar
  18. 18.
    Bani M. R., Garofalo A., Scanziani E., et al., Effect of interleukin-1-beta on metastasis formation in different tumor systems. J Natl Cancer Inst 83:119-23 (1991)PubMedGoogle Scholar
  19. 19.
    Shaw A. T., Kirsch D. G., and Jacks T., Future of early detection of lung cancer: The role of mouse models. Clin Cancer Res 11:4999 s-5003s (2005)Google Scholar
  20. 20.
    Janssen K. P., El-Marjou F., Pinto D., et al., Targeted expression of oncogenic K-Ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 123:492-504 (2002)PubMedGoogle Scholar
  21. 21.
    Vogelstein B., Fearon E. R., Hamilton S. R., et al., Genetic alterations during colorectal-tumor development. N Engl J Med 319:525-32 (1988)PubMedGoogle Scholar
  22. 22.
    Hingorani S. R., Petricoin E. F., Maitra A., et al., Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437-50 (2003)PubMedGoogle Scholar
  23. 23.
    Chiappetta G., Fabien N., Picone A., et al., Transgenic mice carrying the human Kras oncogene under the control of a thyroglobulin promoter: Kras expression in thyroids analyzed by in situ hybridization. Oncol Res 8:85-93 (1996)PubMedGoogle Scholar
  24. 24.
    Yang Y., Wislez M., Fujimoto N., et al., A selective small molecule inhibitor of c-Met, PHA-665752, reverses lung premalignancy induced by mutant K-ras. Mol Cancer Ther 7:952-60 (2008)PubMedCentralPubMedGoogle Scholar
  25. 25.
    Ristevski S., Making better transgenic models: Conditional, temporal, and spatial approaches. Mol Biotechnol 29:153-63 (2005)PubMedGoogle Scholar
  26. 26.
    Tuveson D. A., Zhu L., Gopinathan A., et al., Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res 66:242-7 (2006)Google Scholar
  27. 27.
    Feldmann G., Beaty R., Hruban R. H., et al., Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 14:224-32 (2007)PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hingorani S. R., Wang L., Multani A. S., et al., Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469-83 (2005)PubMedGoogle Scholar
  29. 29.
    Sun Y, Chen X, and Xiao D. Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim Biophys Sin (Shanghai) 39:235-46 (2007)Google Scholar
  30. 30.
    Baillie M., Alcohol and the liver. Gut 12:222-9 (1971)PubMedCentralPubMedGoogle Scholar
  31. 31.
    Forgione A., Miele L., Cefalo C., et al., Alcoholic and nonalcoholic forms of fatty liver disease. Minerva Gastroenterol Dietol 53:83-100 (2007)PubMedGoogle Scholar
  32. 32.
    Mufti S. I., Eskelson C. D., Odeleye O. E., et al., Alcohol-associated generation of oxygen free radicals and tumor promotion. Alcohol Alcohol 28:621-8 (1993)PubMedGoogle Scholar
  33. 33.
    Balkwill F. and Mantovani A., Inflammation and cancer: Back to Virchow? Lancet 357:539-45 (2001)PubMedGoogle Scholar
  34. 34.
    Colotta F., Allavena P., Sica A., et al., Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 30:1073-81 (2009)PubMedGoogle Scholar
  35. 35.
    Porta C., Larghi P., Rimoldi M., et al., Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214:761-77 (2009)PubMedGoogle Scholar
  36. 36.
    Bonnet D. and Dick J. E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730-7 (1997)PubMedGoogle Scholar
  37. 37.
    Ailles L. E. and Weissman I. L., Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460-6 (2007)PubMedGoogle Scholar
  38. 38.
    Reya T., Morrison S. J., Clarke M. F., et al., Stem cells, cancer, and cancer stem cells. Nature 414:105-11 (2001)PubMedGoogle Scholar
  39. 39.
    Miyamoto T., Weissman I. L., and Akashi K., AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A 97:7521-6 (2000)PubMedCentralPubMedGoogle Scholar
  40. 40.
    Merlo L. M., Pepper J. W., Reid B. J., et al., Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924-35 (2006)PubMedGoogle Scholar
  41. 41.
    Polyak K. and Weinberg R. A., Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265-73 (2009)PubMedGoogle Scholar
  42. 42.
    Cai W. and Chen X., Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49 Suppl 2:113S-28S (2008)Google Scholar
  43. 43.
    Yang L., Cao Z., Lin Y., et al., Molecular beacon imaging of tumor marker gene expression in pancreatic cancer cells. Cancer Biol Ther 4:561-70 (2005)PubMedCentralPubMedGoogle Scholar
  44. 44.
    Stefflova K., Chen J., and Zheng G., Using molecular beacons for cancer imaging and treatment. Front Biosci 12:4709-21 (2007)PubMedGoogle Scholar
  45. 45.
    So M. K., Gowrishankar G., Hasegawa S., et al., Imaging target mRNA and siRNA-mediated gene silencing in vivo with ribozyme-based reporters. Chembiochem 9:2682-91 (2008)PubMedGoogle Scholar
  46. 46.
    Rao P. S., Tian X., Qin W., et al., 99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumours. Nucl Med Commun 24:857-63 (2003)PubMedGoogle Scholar
  47. 47.
    Good L. and Nielsen P. E., Progress in developing pna as a gene-targeted drug. Antisense Nucleic Acid Drug Dev 7:431-7 (1997)PubMedGoogle Scholar
  48. 48.
    Tian X., Aruva M. R., Qin W., et al., Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera. Bioconjug Chem 16:70-9 (2005)PubMedGoogle Scholar
  49. 49.
    Tian X., Aruva M. R., Zhang K., et al., PET imaging of CCND1 mRNA in human MCF7 estrogen receptor positive breast cancer xenografts with oncogene-specific [64Cu]chelator-peptide nucleic acid-IGF1 analog radiohybridization probes. J Nucl Med 48:1699-707 (2007)PubMedGoogle Scholar
  50. 50.
    Tian X., Chakrabarti A., Amirkhanov N. V., et al., External imaging of CCND1, MYC, and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA-peptide chimeras. Ann N Y Acad Sci 1059:106-44 (2005)PubMedGoogle Scholar
  51. 51.
    Chakrabarti A., Zhang K., Aruva M. R., et al., Radiohybridization PET imaging of Kras G12D mRNA expression in human pancreas cancer xenografts with [(64)Cu]DO3A-peptide nucleic acid-peptide nanoparticles. Cancer Biol Ther 6:948-56 (2007)PubMedGoogle Scholar
  52. 52.
    Amirkhanov N. V., Dimitrov I., Opitz A. W., et al., Design of (Gd-DO3A)n-polydiamidopropanoyl-peptide nucleic acid-D(cys-ser-lys-cys) magnetic resonance contrast agents. Biopolymers 89:1061-76 (2008)PubMedCentralPubMedGoogle Scholar
  53. 53.
    Willmann J. K., Paulmurugan R., Chen K., et al., US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246:508-18 (2008)PubMedGoogle Scholar
  54. 54.
    Pysz M. A., Foygel K., Rosenberg J., et al., Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 256:519-27 (2010)Google Scholar
  55. 55.
    Cai W., Gambhir S. S., and Chen X., Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 445:141-76 (2008)PubMedGoogle Scholar
  56. 56.
    Serganova I., Mayer-Kukuck P., Huang R., et al., Molecular imaging: Reporter gene imaging. Handb Exp Pharmacol 185(Part 2):167-223 (2008)Google Scholar
  57. 57.
    Rando G., Ramachandran B., Rebecchi M., et al., Differential effect of pure isoflavones and soymilk on estrogen receptor activity in mice. Toxicol Appl Pharmacol 237:288-97 (2009)PubMedGoogle Scholar
  58. 58.
    Kang J. H. and Chung J. K., Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49 Suppl 2:164S-79S (2008)PubMedGoogle Scholar
  59. 59.
    Korpal M., Yan J., Lu X., et al., Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15:960-6 (2009)PubMedGoogle Scholar
  60. 60.
    Woolfenden S., Zhu H., and Charest A., A CRE/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis 47:659-66 (2009)PubMedGoogle Scholar
  61. 61.
    Mathis J. M., Williams B. J., Sibley D. A., et al., Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J Gene Med 8:1105-20 (2006)PubMedGoogle Scholar
  62. 62.
    Wang Z. X., Bian H. B., Yang J. S., et al., Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer. Cancer Biol Ther 8:1480-8 (2009)PubMedGoogle Scholar
  63. 63.
    Isomoto H., Ohtsuru A., Braiden V., et al., Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer. Oncol Rep 15:629-35 (2006)PubMedGoogle Scholar
  64. 64.
    Cai W., Chen K., Li Z. B., et al., Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862-70 (2007)PubMedGoogle Scholar
  65. 65.
    Blanco E., Kessinger C. W., Sumer B. D., et al., Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood) 234:123-31 (2009)Google Scholar
  66. 66.
    Edinger M., Cao Y. A., Verneris M. R., et al., Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640-8 (2003)PubMedGoogle Scholar
  67. 67.
    Wang H., Cao F., De A., et al., Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27:1548-1558 (2009)PubMedGoogle Scholar
  68. 68.
    Sasportas L. S., Kasmieh R., Wakimoto H., et al., Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106:4822-7 (2009)PubMedCentralPubMedGoogle Scholar
  69. 69.
    Yang M., Reynoso J., Jiang P., et al., Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Res 64:8651-6 (2004)PubMedGoogle Scholar
  70. 70.
    Maurer A. H., Combined imaging modalities: PET/CT and SPECT/CT. Health Phys 95:571-6 (2008)PubMedGoogle Scholar
  71. 71.
    Willmann J. K., Van Bruggen N., Dinkelborg L. M., et al., Molecular imaging in drug development. Nat Rev Drug Discov 7:591-607 (2008)PubMedGoogle Scholar
  72. 72.
    Fass L., Imaging and cancer: A review. Mol Oncol 2:115-52 (2008)PubMedGoogle Scholar
  73. 73.
    Mariani G., Bruselli L., and Duatti A., Is PEt always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 35:1560-5 (2008)PubMedGoogle Scholar
  74. 74.
    Wuest F., Kohler L., Berndt M., et al., Systematic comparison of two novel, thiol-reactive prosthetic groups for 18F labeling of peptides and proteins with the acylation agent succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Amino Acids 36:283-95 (2009)PubMedGoogle Scholar
  75. 75.
    Cai W., Zhang X., Wu Y., et al., A thiol-reactive 18F-labeling agent, n-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of alpha v beta 3 integrin expression. J Nucl Med 47:1172-80 (2006)PubMedCentralPubMedGoogle Scholar
  76. 76.
    Shokeen M. and Anderson C. J., Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res 42:832-41 (2009)PubMedCentralPubMedGoogle Scholar
  77. 77.
    Dunphy M. P. and Lewis J. S., Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 50 Suppl 1:106S-21S (2009)PubMedCentralPubMedGoogle Scholar
  78. 78.
    Dierckx R. A. and Van De Wiele C., FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Mol Imaging 35:1544-9 (2008)PubMedCentralPubMedGoogle Scholar
  79. 79.
    von Forstner C., Egberts J. H., Ammerpohl O., et al., Gene expression patterns and tumor uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an orthotopic mouse xenotransplantation model of pancreatic cancer. J Nucl Med 49:1362-70 (2008)Google Scholar
  80. 80.
    Pakzad F., Groves A. M., and Ell P. J., The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med 36:248-56 (2006)PubMedGoogle Scholar
  81. 81.
    Liu R. S., Chou T. K., Chang C. H., et al., Biodistribution, pharmacokinetics and PET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAC in a sarcoma- and inflammation-bearing mouse model. Nucl Med Biol 36:305-12 (2009)PubMedGoogle Scholar
  82. 82.
    Miyagawa T., Gogiberidze G., Serganova I., et al., Imaging of HSV-tk reporter gene expression: Comparison between [18F]FEAU, [18F]FFEAU, and other imaging probes. J Nucl Med 49:637-48 (2008)PubMedGoogle Scholar
  83. 83.
    Urakami T., Sakai K., Asai T., et al., Evaluation of o-[(18)F]fluoromethyl-D-tyrosine as a radiotracer for tumor imaging with positron emission tomography. Nucl Med Biol 36:295-303 (2009)PubMedGoogle Scholar
  84. 84.
    Liu Z., Cai W., He L., et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47-52 (2007)PubMedGoogle Scholar
  85. 85.
    Bolus N. E., George R., Washington J., et al., PET/MRI: The blended-modality choice of the future? J Nucl Med Technol 37:63-71; quiz 72-3 (2009)Google Scholar
  86. 86.
    Williams L. E., Denardo G. L., and Meredith R. F., Targeted radionuclide therapy. Med Phys 35:3062-8 (2008)PubMedCentralPubMedGoogle Scholar
  87. 87.
    Rahmim A. and Zaidi H., PET versus SPECT: Strengths, limitations and challenges. Nucl Med Commun 29:193-207 (2008)PubMedGoogle Scholar
  88. 88.
    Aviv H., Bartling S., Kieslling F., et al., Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications. Biomaterials 30:5610-6 (2009)PubMedGoogle Scholar
  89. 89.
    Wyss C., Schaefer S. C., Juillerat-Jeanneret L., et al., Molecular imaging by micro-CT: Specific E-selectin imaging. Eur Radiol 19:2487-94 (2009)PubMedGoogle Scholar
  90. 90.
    Jackson P. A., Rahman W. N., Wong C. J., et al., Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 75:104-9Google Scholar
  91. 91.
    Cai Q. Y., Kim S. H., Choi K. S., et al., Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42:797-806 (2007)PubMedGoogle Scholar
  92. 92.
    Rabin O., Manuel Perez J., Grimm J., et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118-22 (2006)PubMedGoogle Scholar
  93. 93.
    Tran T. D., Caruthers S. D., Hughes M., et al., Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomedicine 2:515-26 (2007)PubMedCentralPubMedGoogle Scholar
  94. 94.
    Serkova N. J., Hasebroock K. M., and Kraft S. L., Magnetic resonance spectroscopy of living tissues. Methods Mol Biol 520:315-27 (2009)PubMedGoogle Scholar
  95. 95.
    Simoes R. V., Martinez-Aranda A., Martin B., et al., Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by mri/mrs. MAGMA 21:237-49 (2008)PubMedGoogle Scholar
  96. 96.
    Palmowski M., Schifferdecker I., Zwick S., et al., Tumor perfusion assessed by dynamic contrast-enhanced mri correlates to the grading of renal cell carcinoma: Initial results. Eur J Radiol 74:e176-80Google Scholar
  97. 97.
    Farace P., Merigo F., Fiorini S., et al., DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content. Eur J Radiol 78:52-9 (2011)Google Scholar
  98. 98.
    Kiessling F., Morgenstern B., and Zhang C., Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr Med Chem 14:77-91 (2007)PubMedGoogle Scholar
  99. 99.
    Rudin M., Mcsheehy P. M., Allegrini P. R., et al., PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent gddota by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo. NMR Biomed 18:308-21 (2005)PubMedGoogle Scholar
  100. 100.
    Morawski A. M., Winter P. M., Crowder K. C., et al., Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with mri. Magn Reson Med 51:480-6 (2004)PubMedGoogle Scholar
  101. 101.
    Artemov D., Bhujwalla Z. M., and Bulte J. W., Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5:485-94 (2004)PubMedGoogle Scholar
  102. 102.
    Reichardt W., Hu-Lowe D., Torres D., et al., Imaging of VEGF receptor kinase inhibitor-induced antiangiogenic effects in drug-resistant human adenocarcinoma model. Neoplasia 7:847-53 (2005)PubMedCentralPubMedGoogle Scholar
  103. 103.
    Mccarthy J. R. and Weissleder R., Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241-51 (2008)PubMedCentralPubMedGoogle Scholar
  104. 104.
    Artemov D., Mori N., Ravi R., et al., Magnetic resonance molecular imaging of the HER-2/NEU receptor. Cancer Res 63:2723-7 (2003)PubMedGoogle Scholar
  105. 105.
    Gilad A. A., Ziv K., Mcmahon M. T., et al., MRI reporter genes. J Nucl Med 49:1905-8 (2008)PubMedCentralPubMedGoogle Scholar
  106. 106.
    Cohen B., Dafni H., Meir G., et al., Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109-17 (2005)PubMedCentralPubMedGoogle Scholar
  107. 107.
    Cohen B., Ziv K., Plaks V., et al., MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13:498-503 (2007)PubMedGoogle Scholar
  108. 108.
    Partlow K. C., Chen J., Brant J. A., et al., 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647-54 (2007)PubMedGoogle Scholar
  109. 109.
    Ahrens E. T., Flores R., Xu H., et al., In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983-7 (2005)PubMedGoogle Scholar
  110. 110.
    Wang Z. Y., Song J., and Zhang D. S., Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J Gastroenterol 15:2995-3002 (2009)PubMedCentralPubMedGoogle Scholar
  111. 111.
    Kiessling F., Huppert J., and Palmowski M., Functional and molecular ultrasound imaging: Concepts and contrast agents. Curr Med Chem 16:627-42 (2009)PubMedGoogle Scholar
  112. 112.
    Deshpande N. S. and Willmann J. K., "Micro- and nano-particle based contrast-enhanced ultrasound imaging". in: Nanoplatform based molecular imaging, Edited by Chen X., Wiley Publications (2011)Google Scholar
  113. 113.
    Balaban R. S. and Hampshire V. A., Challenges in small animal noninvasive imaging. ILAR J 42:248-62 (2001)PubMedGoogle Scholar
  114. 114.
    Qin S., Caskey C. F., and Ferrara K. W., Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering. Phys Med Biol 54:R27-57 (2009)PubMedCentralPubMedGoogle Scholar
  115. 115.
    Ferrara K., Pollard R., and Borden M., Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415-47 (2007)PubMedGoogle Scholar
  116. 116.
    Ding Y., Boguslawski E. A., Berghuis B. D., et al., Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarcoma. Mol Cancer Ther 7:648-58 (2008)PubMedGoogle Scholar
  117. 117.
    Krix M., Kiessling F., Vosseler S., et al., Sensitive noninvasive monitoring of tumor perfusion during antiangiogenic therapy by intermittent bolus-contrast power doppler sonography. Cancer Res 63:8264-70 (2003)PubMedGoogle Scholar
  118. 118.
    Folkman J., Angiogenesis. Annu Rev Med 57:1-18 (2006)PubMedGoogle Scholar
  119. 119.
    Willmann J. K., Cheng Z., Davis C., et al., Targeted microbubbles for imaging tumor angiogenesis: Assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology 249:212-9 (2008)PubMedCentralPubMedGoogle Scholar
  120. 120.
    Willmann J. K., Lutz A. M., Paulmurugan R., et al., Dual-targeted contrast agent for us assessment of tumor angiogenesis in vivo. Radiology 248:936-44 (2008)PubMedCentralPubMedGoogle Scholar
  121. 121.
    Rychak J. J., Graba J., Cheung A. M., et al., Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6:289-96 (2007)PubMedGoogle Scholar
  122. 122.
    Lee D. J., Lyshchik A., Huamani J., et al., Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 27:855-66 (2008)PubMedGoogle Scholar
  123. 123.
    Hughes M. S., Marsh J. N., Zhang H., et al., Characterization of digital waveforms using thermodynamic analogs: Detection of contrast-targeted tissue in vivo. IEEE Trans Ultrason Ferroelectr Freq Control 53:1609-16 (2006)PubMedGoogle Scholar
  124. 124.
    Pisani E., Tsapis N., Paris J., et al., Polymeric nano/microcapsules of liquid perfluorocarbons for ultrasonic imaging: Physical characterization. Langmuir 22:4397-402 (2006)PubMedGoogle Scholar
  125. 125.
    Yadav R. R., Mishra G., Yadawa P. K., et al., Ultrasonic properties of nanoparticles-liquid suspensions. Ultrasonics 48:591-3 (2008)PubMedGoogle Scholar
  126. 126.
    Nolte I., Vince G. H., Maurer M., et al., Iron particles enhance visualization of experimental gliomas with high-resolution sonography. AJNR Am J Neuroradiol 26:1469-74 (2005)PubMedGoogle Scholar
  127. 127.
    Liu J., Li J., Rosol T. J., et al., Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys Med Biol 52:4739-47 (2007)PubMedGoogle Scholar
  128. 128.
    Liu J., Levine A. L., Mattoon J. S., et al., Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51:2179-89 (2006)PubMedGoogle Scholar
  129. 129.
    Manome Y., Nakamura M., Ohno T., et al., Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 11:1521-8 (2000)PubMedGoogle Scholar
  130. 130.
    Newman C. M. and Bettinger T., Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther 14:465-75 (2007)PubMedGoogle Scholar
  131. 131.
    Mo R., Lin S., Wang G., et al., Preliminary in vitro study of ultrasound sonoporation cell labeling with superparamagnetic iron oxide particles for MRI cell tracking. Conf Proc IEEE Eng Med Biol Soc 2008:367-70 (2008)PubMedGoogle Scholar
  132. 132.
    Feril L. B., Jr., Ultrasound-mediated gene transfection. Methods Mol Biol 542:179-94 (2009)PubMedGoogle Scholar
  133. 133.
    Wang D. S., Panje C., Pysz M. A., et al., Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology 264:721-32 (2012)Google Scholar
  134. 134.
    Lentacker I., De Geest B. G., Vandenbroucke R. E., et al., Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 22:7273-8 (2006)PubMedGoogle Scholar
  135. 135.
    Christiansen J. P., French B. A., Klibanov A. L., et al., Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759-67 (2003)PubMedGoogle Scholar
  136. 136.
    Aoi A., Watanabe Y., Mori S., et al., Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med Biol 34:425-34 (2008)PubMedGoogle Scholar
  137. 137.
    Tran M. A., Gowda R., Sharma A., et al., Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering rna inhibits cutaneous melanocytic lesion development. Cancer Res 68:7638-49 (2008)PubMedCentralPubMedGoogle Scholar
  138. 138.
    Hayashi S., Mizuno M., Yoshida J., et al., Effect of sonoporation on cationic liposome-mediated IFNbeta gene therapy for metastatic hepatic tumors of murine colon cancer. Cancer Gene Ther 16:638-43 (2009)PubMedGoogle Scholar
  139. 139.
    Nie F., Xu H. X., Lu M. D., et al., Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: An in vivo experimental study. J Drug Target 16:389-95 (2008)PubMedGoogle Scholar
  140. 140.
    Lentacker I., Geers B., Demeester J., et al., Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: Cytotoxicity and mechanisms involved. Mol Ther 18:101-8 (2009)Google Scholar
  141. 141.
    Rapoport N., Gao Z., and Kennedy A., Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095-106 (2007)PubMedGoogle Scholar
  142. 142.
    Xing W., Gang W. Z., Yong Z., et al., Treatment of xenografted ovarian carcinoma using paclitaxel-loaded ultrasound microbubbles. Acad Radiol 15:1574-9 (2008)PubMedGoogle Scholar
  143. 143.
    Zhao Y. Z., Lu C. T., Fu H. X., et al., Phospholipid-based ultrasonic microbubbles for loading protein and ultrasound-triggered release. Drug Dev Ind Pharm 35:1121-7 (2009)PubMedGoogle Scholar
  144. 144.
    Gao Z., Kennedy A. M., Christensen D. A., et al., Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48:260-70 (2008)PubMedCentralPubMedGoogle Scholar
  145. 145.
    Larkin J. O., Casey G. D., Tangney M., et al., Effective tumor treatment using optimized ultrasound-mediated delivery of bleomycin. Ultrasound Med Biol 34:406-13 (2008)PubMedGoogle Scholar
  146. 146.
    Sibille A., Prat F., Chapelon J. Y., et al., Characterization of extracorporeal ablation of normal and tumor-bearing liver tissue by high intensity focused ultrasound. Ultrasound Med Biol 19:803-13 (1993)PubMedGoogle Scholar
  147. 147.
    Weissleder R. and Pittet M. J., Imaging in the era of molecular oncology. Nature 452:580-9 (2008)PubMedCentralPubMedGoogle Scholar
  148. 148.
    Sokolov K., Aaron J., Hsu B., et al., Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat 2:491-504 (2003)PubMedGoogle Scholar
  149. 149.
    Sokolov K., Follen M., Aaron J., et al., Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999-2004 (2003)PubMedGoogle Scholar
  150. 150.
    Dekker E. and Fockens P., New imaging techniques at colonoscopy: Tissue spectroscopy and narrow band imaging. Gastrointest Endosc Clin N Am 15:703-14 (2005)PubMedGoogle Scholar
  151. 151.
    Herth F. J., Eberhardt R., and Ernst A., The future of bronchoscopy in diagnosing, staging and treatment of lung cancer. Respiration 73:399-409 (2006)PubMedGoogle Scholar
  152. 152.
    Luker G. D. and Luker K. E., Optical imaging: Current applications and future directions. J Nucl Med 49:1-4 (2008)PubMedGoogle Scholar
  153. 153.
    Ballou B., Ernst L. A., and Waggoner A. S., Fluorescence imaging of tumors in vivo. Curr Med Chem 12:795-805 (2005)PubMedGoogle Scholar
  154. 154.
    Veiseh M., Gabikian P., Bahrami S. B., et al., Tumor paint: A chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67:6882-8 (2007)PubMedGoogle Scholar
  155. 155.
    Chen J., Tung C. H., Allport J. R., et al., Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111:1800-5 (2005)PubMedCentralPubMedGoogle Scholar
  156. 156.
    Jiang T., Olson E. S., Nguyen Q. T., et al., Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101:17867-72 (2004)PubMedCentralPubMedGoogle Scholar
  157. 157.
    Mahmood U., Tung C. H., Bogdanov A., Jr., et al., Near-infrared optical imaging of protease activity for tumor detection. Radiology 213:866-70 (1999)PubMedGoogle Scholar
  158. 158.
    Tung C. H., Bredow S., Mahmood U., et al., Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem 10:892-6 (1999)PubMedGoogle Scholar
  159. 159.
    Weissleder R., Tung C. H., Mahmood U., et al., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375-8 (1999)PubMedGoogle Scholar
  160. 160.
    Alencar H., Funovics M. A., Figueiredo J., et al., Colonic adenocarcinomas: Near-infrared microcatheter imaging of smart probes for early detection--study in mice. Radiology 244:232-8 (2007)PubMedGoogle Scholar
  161. 161.
    Gounaris E., Tung C. H., Restaino C., et al., Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3:e2916 (2008)PubMedCentralPubMedGoogle Scholar
  162. 162.
    Figueiredo J. L., Alencar H., Weissleder R., et al., Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int J Cancer 118:2672-7 (2006)PubMedGoogle Scholar
  163. 163.
    McCann C. M., Waterman P., Figueiredo J. L., et al., Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage 45:360-9 (2009)PubMedCentralPubMedGoogle Scholar
  164. 164.
    Chang S. K., Rizvi I., Solban N., et al., In vivo optical molecular imaging of vascular endothelial growth factor for monitoring cancer treatment. Clin Cancer Res 14:4146-53 (2008)PubMedGoogle Scholar
  165. 165.
    Zheng G., Chen J., Stefflova K., et al., Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Natl Acad Sci U S A 104:8989-94 (2007)PubMedCentralPubMedGoogle Scholar
  166. 166.
    Edinger M., Cao Y. A., Hornig Y. S., et al., Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38:2128-36 (2002)PubMedGoogle Scholar
  167. 167.
    So M. K., Xu C., Loening A. M., et al., Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339-43 (2006)PubMedGoogle Scholar
  168. 168.
    Smith B. R. and Gambhir S. S., "Chapter 17: Nanoparticle-based molecular imaging in living subjects." in: Molecular imaging in oncology, Edited by: Pomper M. G. and Gelovani J. G., Taylor & Francis, Inc., (2008), pp. 261-282.Google Scholar
  169. 169.
    Nie S., Xing Y., Kim G. J., et al., Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257-88 (2007)PubMedGoogle Scholar
  170. 170.
    Smith A. M., Duan H., Mohs A. M., et al., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226-40 (2008)PubMedCentralPubMedGoogle Scholar
  171. 171.
    Hirsch L. R., Gobin A. M., Lowery A. R., et al., Metal nanoshells. Ann Biomed Eng 34:15-22 (2006)PubMedGoogle Scholar
  172. 172.
    Wang L. V., Prospects of photoacoustic tomography. Med Phys 35:5758-67 (2008)PubMedCentralPubMedGoogle Scholar
  173. 173.
    Li P. C., Wang C. R., Shieh D. B., et al., In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16:18605-15 (2008)PubMedGoogle Scholar
  174. 174.
    De La Zerda A., Zavaleta C., Keren S., et al., Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557-62 (2008)PubMedGoogle Scholar
  175. 175.
    Keren S., Zavaleta C., Cheng Z., et al., Noninvasive molecular imaging of small living subjects using raman spectroscopy. Proc Natl Acad Sci U S A 105:5844-9 (2008)PubMedCentralPubMedGoogle Scholar
  176. 176.
    Zavaleta C., De La Zerda A., Liu Z., et al., Noninvasive raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett 8:2800-5 (2008)PubMedCentralPubMedGoogle Scholar
  177. 177.
    Haisch C., Quantitative analysis in medicine using photoacoustic tomography. Anal Bioanal Chem 393:473-9 (2009)PubMedGoogle Scholar
  178. 178.
    Nijssen A., Koljenovic S., Bakker Schut T. C., et al., Towards oncological application of raman spectroscopy. J Biophotonics 2:29-36 (2009)Google Scholar
  179. 179.
    Weissleder R., Scaling down imaging: Molecular mapping of cancer in mice. Nat Rev Cancer 2:11-8 (2002)PubMedGoogle Scholar
  180. 180.
    Teicher B. A., Acute and chronic in vivo therapeutic resistance. Biochem Pharmacol 77:1665-73 (2009)PubMedGoogle Scholar
  181. 181.
    Vonlaufen A., Phillips P. A., Xu Z., et al., Pancreatic stellate cells and pancreatic cancer cells: An unholy alliance. Cancer Res 68:7707-10 (2008)PubMedGoogle Scholar
  182. 182.
    Kurdziel K. A., Kalen J. D., Hirsch J. I., et al., Imaging multidrug resistance with 4-[18F]fluoropaclitaxel. Nucl Med Biol 34:823-31 (2007)PubMedGoogle Scholar
  183. 183.
    Barqawi A. B. and Crawford E. D., Emerging role of HIFU as a noninvasive ablative method to treat localized prostate cancer. Oncology (Williston Park) 22:123-9; discussion 129, 133, 137 passim (2008)Google Scholar
  184. 184.
    Grenier N., Quesson B., De Senneville B. D., et al., Molecular MR imaging and MR-guided ultrasound therapies in cancer. JBR-BTR 92:8-12 (2009)PubMedGoogle Scholar
  185. 185.
    Maruyama H., Yoshikawa M., and Yokosuka O., Current role of ultrasound for the management of hepatocellular carcinoma. World J Gastroenterol 14:1710-9 (2008)PubMedCentralPubMedGoogle Scholar
  186. 186.
    Lu P., Zhu X. Q., Xu Z. L., et al., Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 145:286-93 (2009)PubMedGoogle Scholar
  187. 187.
    Gao X., Cui Y., Levenson R. M., et al., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969-76 (2004)Google Scholar
  188. 188.
    Szpirer C., and Szpirer J., Mammary cancer susceptibility: Human genes and rodent models. Mamm Genome 18:817-31 (2007)PubMedGoogle Scholar
  189. 189.
    Winter S. F., and Hunter K. W., Mouse modifier genes in mammary tumorigenesis and metastasis.J Mammary Gland Biol Neoplasia 13:337-42 (2008)PubMedGoogle Scholar
  190. 190.
    Garnis C., Buys T. P., and Lam W. L., Genetic alteration and gene expression modulation during cancer progression. Mol Cancer 3:9 (2004)PubMedCentralPubMedGoogle Scholar
  191. 191.
    Jackson M. A., Lea I., Rashid A., et al. Genetic alterations in cancer knowledge system: Analysis of gene mutations in mouse and human liver and lung tumors. Toxicol Sci 90:400-18 (2006)PubMedGoogle Scholar
  192. 192.
    Singh M., Lin J., Hocker T. L., et al. Genetics of melanoma tumorigenesis. Br J Dermatol 158:15-21 (2008)PubMedGoogle Scholar
  193. 193.
    Rebouissou S., Bioulac-Sage P., and Zucman-Rossi J., Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma. J Hepatol 48:163-70 (2008)PubMedGoogle Scholar
  194. 194.
    Lemmer E. R., Friedman S. L., and Llovet J. M., Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: The potential of gene expression profiling. Semin Liver Dis 26:373-84 (2006)PubMedGoogle Scholar
  195. 195.
    Ottenhof N. A., Milne A. N., Morsink F. H., et al., Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: Of mice and men. Arch Pathol Lab Med 133:375-81 (2009)PubMedGoogle Scholar
  196. 196.
    Shiraishi T. and Tabuchi K., Genetic alterations of human brain tumors as molecular prognostic factors. Neuropathology 23:95-108 (2003)PubMedGoogle Scholar
  197. 197.
    Krug U., Ganser A., and Koeffler H. P., Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21:3475-95 (2002)Google Scholar
  198. 198.
    Shan W. and Liu J., Epithelial ovarian cancer: Focus on genetics and animal models. Cell Cycle 8:731-5 (2009)PubMedGoogle Scholar
  199. 199.
    Borowsky A., Special considerations in mouse models of breast cancer. Breast Dis 28:29-38 (2007)PubMedGoogle Scholar
  200. 200.
    Pritchard C., Carragher L., Aldridge V., et al., Mouse models for braf-induced cancers. Biochem Soc Trans 35:1329-33 (2007)PubMedCentralPubMedGoogle Scholar
  201. 201.
    Dutt A. and Wong K. K., Mouse models of lung cancer. Clin Cancer Res 12:4396 s-4402s (2006)Google Scholar
  202. 202.
    Wakamatsu N., Devereux T. R., Hong H. H., et al., Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 35:75-80 (2007).Google Scholar
  203. 203.
    Moser A. R., Pitot H. C., and Dove W. F., A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322-4 (1990)PubMedGoogle Scholar
  204. 204.
    Fodde R., Edelmann W., Yang K., et al., A targeted chain-termination mutation in the mouse APC gene results in multiple intestinal tumors. Proc Natl Acad Sci U S A 91:8969-73 (1994)PubMedCentralPubMedGoogle Scholar
  205. 205.
    Velcich A., Yang W., Heyer J., et al., Colorectal cancer in mice genetically deficient in the mucin MUC2. Science 295:1726-9 (2002)PubMedGoogle Scholar
  206. 206.
    Hirose Y., Hata K., Kuno T., et al., Enhancement of development of azoxymethane-induced colonic premalignant lesions in C57BL/KSJ-DB/DB mice. Carcinogenesis 25:821-5 (2004)PubMedGoogle Scholar
  207. 207.
    Reddy B. S., Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ Mol Mutagen 44:26-35 (2004)PubMedGoogle Scholar
  208. 208.
    Taketo M. M. and Edelmann W., Mouse models of colon cancer. Gastroenterology 136:780-98 (2009)PubMedGoogle Scholar
  209. 209.
    Leder A., Kuo A., Cardiff R. D., et al., V-Ha-Ras transgene abrogates the initiation step in mouse skin tumorigenesis: Effects of phorbol esters and retinoic acid. Proc Natl Acad Sci U S A 87:9178-82 (1990)PubMedCentralPubMedGoogle Scholar
  210. 210.
    Saitoh A., Kimura M., Takahashi R., et al., Most tumors in transgenic mice with human C-Ha-Ras gene contained somatically activated transgenes. Oncogene 5:1195-200 (1990)PubMedGoogle Scholar
  211. 211.
    Borowsky A. D., Munn R. J., Galvez J. J., et al., Mouse models of human cancers (part 3). Comp Med 54:258-70 (2004)PubMedGoogle Scholar
  212. 212.
    Lynch D., Svoboda J., Putta S., et al., Mouse skin models for carcinogenic hazard identification: Utilities and challenges. Toxicol Pathol 35:853-64 (2007)PubMedGoogle Scholar
  213. 213.
    Rogers A. B., and Fox J. G., Inflammation and cancer. I. Rodent models of infectious gastrointestinal and liver cancer. Am J Physiol Gastrointest Liver Physiol 286:G361-6 (2004)PubMedGoogle Scholar
  214. 214.
    Katzenellenbogen M., Mizrahi L., Pappo O., et al., Molecular mechanisms of liver carcinogenesis in the MDR2-knockout mice. Mol Cancer Res 5:1159-70 (2007)PubMedGoogle Scholar
  215. 215.
    Tward A. D., Jones K. D., Yant S., et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A 104:14771-6 (2007)PubMedCentralPubMedGoogle Scholar
  216. 216.
    Kohle C., Schwarz M., and Bock K. W., Promotion of hepatocarcinogenesis in humans and animal models. Arch Toxicol 82:623-31 (2008)PubMedGoogle Scholar
  217. 217.
    Carriere C., Young A. L., Gunn J. R., et al., Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic KRas. Biochem Biophys Res Commun 382:561-5 (2009)PubMedCentralPubMedGoogle Scholar
  218. 218.
    Huse J. T. and Holland E. C., Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19:132-43 (2009)PubMedCentralPubMedGoogle Scholar
  219. 219.
    Rice J. M. and Wilbourn J. D., Tumors of the nervous system in carcinogenic hazard identification. Toxicol Pathol 28:202-14 (2000)PubMedGoogle Scholar
  220. 220.
    Bernardi R., Grisendi S., and Pandolfi P. P., Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 21:3445-58 (2002)PubMedGoogle Scholar
  221. 221.
    Huff J. E., Haseman J. K., Demarini D. M., et al., Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3FL mice. Environ Health Perspect 82:125-63 (1989)PubMedCentralPubMedGoogle Scholar
  222. 222.
    Bosetti C., McLaughlin J. K., Tarone R. E., et al., Formaldehyde and cancer risk: A quantitative review of cohort studies through 2006. Ann Oncol 19:29-43 (2008)PubMedGoogle Scholar
  223. 223.
    Melnick R. L. and Huff J., 1,3-butadiene: Toxicity and carcinogenicity in laboratory animals and in humans. Rev Environ Contam Toxicol 124:111-44 (1992)PubMedGoogle Scholar
  224. 224.
    Kerkhofs S., Denayer S., Haelens A., et al., Androgen receptor knockout and knock-in mouse models. J Mol Endocrinol 42:11-7 (2009)PubMedGoogle Scholar
  225. 225.
    Gingrich J. R., Barrios R. J., Morton R. A., et al., Metastatic prostate cancer in a transgenic mouse. Cancer Res 56:4096-102 (1996)PubMedGoogle Scholar
  226. 226.
    Kasper S., Survey of genetically engineered mouse models for prostate cancer: Analyzing the molecular basis of prostate cancer development, progression, and metastasis. J Cell Biochem 94:279-97 (2005)PubMedGoogle Scholar
  227. 227.
    Shirai T., Takahashi S., Cui L., et al., Experimental prostate carcinogenesis - rodent models. Mutat Res 462:219-26 (2000)PubMedGoogle Scholar
  228. 228.
    Flesken-Nikitin A., Choi K. C., Eng J. P., et al., Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 63:3459-63 (2003)PubMedGoogle Scholar
  229. 229.
    Connolly D. C., Bao R., Nikitin A. Y., et al., Female mice chimeric for expression of the simian virus 40 TAG under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res 63:1389-97 (2003)PubMedGoogle Scholar
  230. 230.
    Wu R., Hendrix-Lucas N., Kuick R., et al., Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/PTEN signaling pathways. Cancer Cell 11:321-33 (2007)PubMedGoogle Scholar
  231. 231.
    Wang Y., Zhang Z., Lu Y., et al., Enhanced susceptibility to chemical induction of ovarian tumors in mice with a germ line p53 mutation. Mol Cancer Res 6:99-109 (2008)PubMedGoogle Scholar
  232. 232.
    Chen K., Cai W., Li Z. B., et al., Quantitative PET imaging of VEGF receptor expression. Mol Imaging Biol 11:15-22 (2009)PubMedGoogle Scholar
  233. 233.
    Wang H., Cai W., Chen K., et al., A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 34:2001-10 (2007)PubMedGoogle Scholar
  234. 234.
    Chen K., Li Z. B., Wang H., et al., Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235-44 (2008)PubMedGoogle Scholar
  235. 235.
    Kimura R. H., Cheng Z., Gambhir S. S., et al., Engineered knottin peptides: A new class of agents for imaging integrin expression in living subjects. Cancer Res 69:2435-42 (2009)PubMedCentralPubMedGoogle Scholar
  236. 236.
    Reischl G., Dorow D. S., Cullinane C., et al., Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZ--irst small animal PET results. J Pharm Pharm Sci 10:203-11 (2007)PubMedGoogle Scholar
  237. 237.
    Ljungkvist A. S., Bussink J., Kaanders J. H., et al., Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167:127-45 (2007)PubMedGoogle Scholar
  238. 238.
    He F., Deng X., Wen B., et al., Noninvasive molecular imaging of hypoxia in human xenografts: Comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 68:8597-606 (2008)PubMedCentralPubMedGoogle Scholar
  239. 239.
    Piert M., Machulla H. J., Picchio M., et al., Hypoxia-specific tumor imaging with 18F-Fluoroazomycin arabinoside. J Nucl Med 46:106-13 (2005)PubMedGoogle Scholar
  240. 240.
    Niu G., Cai W., and Chen X., Molecular imaging of human epidermal growth factor receptor 2 (HER-2) expression. Front Biosci 13:790-805 (2008)PubMedGoogle Scholar
  241. 241.
    Niu G., Li Z., Cao Q., et al., Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive pet imaging with (64)Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging 36:1510-9 (2009)PubMedCentralPubMedGoogle Scholar
  242. 242.
    Bigott H. M., Parent E., Luyt L. G., et al., Design and synthesis of functionalized cyclopentadienyl tricarbonylmetal complexes for technetium-94 m PET imaging of estrogen receptors. Bioconjug Chem 16:255-64 (2005)PubMedGoogle Scholar
  243. 243.
    Aliaga A., Rousseau J. A., Ouellette R., et al., Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol 31:761-70 (2004)PubMedGoogle Scholar
  244. 244.
    Yang D. J., Li C., Kuang L. R., et al., Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci 55:53-67 (1994)PubMedGoogle Scholar
  245. 245.
    Bettio A., Honer M., Muller C., et al., Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47:1153-60 (2006)PubMedGoogle Scholar
  246. 246.
    Mathias C. J., Lewis M. R., Reichert D. E., et al., Preparation of 66Ga- and 68Ga-labeled Ga(iii)-deferoxamine-folate as potential folate-receptor-targeted pet radiopharmaceuticals. Nucl Med Biol 30:725-31 (2003)PubMedGoogle Scholar
  247. 247.
    Elsasser-Beile U., Reischl G., Wiehr S., et al., PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med 50:606-11 (2009)PubMedGoogle Scholar
  248. 248.
    Keen H. G., Dekker B. A., Disley L., et al., Imaging apoptosis in vivo using 124I-Annexin V and PET. Nucl Med Biol 32:395-402 (2005)PubMedGoogle Scholar
  249. 249.
    Hu G., Lijowski M., Zhang H., et al., Imaging of VX-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles. Int J Cancer 120:1951-7 (2007)PubMedGoogle Scholar
  250. 250.
    Nayak T. K., Hathaway H. J., Ramesh C., et al., Preclinical development of a neutral, estrogen receptor-targeted, tridentate 99mTc(i)-estradiol-pyridin-2-yl hydrazine derivative for imaging of breast and endometrial cancers. J Nucl Med 49:978-86 (2008)PubMedCentralPubMedGoogle Scholar
  251. 251.
    Muller C., Schibli R., Krenning E. P., et al., Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med 49:623-9 (2008)PubMedGoogle Scholar
  252. 252.
    Muller C., Hohn A., Schubiger P. A., et al., Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 33:1007-16 (2006)PubMedGoogle Scholar
  253. 253.
    Mukherjee A., Kothari K., Toth G., et al., 99mTc-labeled Annexin V fragments: A potential SPECT radiopharmaceutical for imaging cell death. Nucl Med Biol 33:635-43 (2006)PubMedGoogle Scholar
  254. 254.
    Choi S. R., Zhuang Z. P., Chacko A. M., et al., SPECT imaging of herpes simplex virus type1 thymidine kinase gene expression by [(123)I]FIAU(1). Acad Radiol 12:798-805 (2005)PubMedGoogle Scholar
  255. 255.
    Mulder W. J., Strijkers G. J., Habets J. W., et al., MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008-10 (2005)PubMedGoogle Scholar
  256. 256.
    Chen T. J., Cheng T. H., Chen C. Y., et al., Targeted herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/Neu receptors using MRI. J Biol Inorg Chem 14:253-60 (2009)PubMedGoogle Scholar
  257. 257.
    Yang L., Mao H., Wang Y. A., et al., Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5:235-43 (2009)PubMedCentralPubMedGoogle Scholar
  258. 258.
    Yang L., Peng X. H., Wang Y. A., et al., Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 15:4722-32 (2009)PubMedCentralPubMedGoogle Scholar
  259. 259.
    Yang L., Mao H., Cao Z., et al., Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136:1514-25 e2 (2009)Google Scholar
  260. 260.
    Chen W. T., Thirumalai D., Shih T. T., et al., Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol 12:145-54 (2009)Google Scholar
  261. 261.
    Liu L., Kodibagkar V. D., Yu J. X., et al., 19F-NMR detection of LacZ gene expression via the enzymic hydrolysis of 2-fluoro-4-nitrophenyl beta-D-galactopyranoside in vivo in PC3 prostate tumor xenografts in the mouse. FASEB J 21:2014-9 (2007)PubMedGoogle Scholar
  262. 262.
    Shan L., Wang S., Sridhar R., et al., Dual probe with fluorescent and magnetic properties for imaging solid tumor xenografts. Mol Imaging 6:85-95 (2007)PubMedGoogle Scholar
  263. 263.
    Gilad A. A., McMahon M. T., Walczak P., et al., Artificial reporter gene providing mri contrast based on proton exchange. Nat Biotechnol 25:217-9 (2007)PubMedGoogle Scholar
  264. 264.
    Kumar C. C., Nie H., Rogers C. P., et al., Biochemical characterization of the binding of echistatin to integrin alphaVbeta3 receptor. J Pharmacol Exp Ther 283:843-53 (1997)PubMedGoogle Scholar
  265. 265.
    Ellegala D. B., Leong-Poi H., Carpenter J. E., et al., Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108:336-41 (2003)PubMedGoogle Scholar
  266. 266.
    Palmowski M., Huppert J., Ladewig G., et al., Molecular profiling of angiogenesis with targeted ultrasound imaging: Early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7:101-9 (2008)PubMedGoogle Scholar
  267. 267.
    Stell A., Belcredito S., Ciana P., et al., Molecular imaging provides novel insights on estrogen receptor activity in mouse brain. Mol Imaging 7:283-92 (2008)Google Scholar
  268. 268.
    Korpanty G., Carbon J. G., Grayburn P. A., et al., Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323-30 (2007)PubMedGoogle Scholar
  269. 269.
    Weller G. E., Wong M. K., Modzelewski R. A., et al., Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 65:533-9 (2005)PubMedGoogle Scholar
  270. 270.
    Backer M. V. Gaynutdinov T. I., Patel V., et al., Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423-9 (2005)PubMedGoogle Scholar
  271. 271.
    Cai W., Shin D. W., Chen K., et al., Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669-76 (2006)PubMedGoogle Scholar
  272. 272.
    Hilger I., Leistner Y., Berndt A., et al., Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 14:1124-9 (2004)PubMedGoogle Scholar
  273. 273.
    Stefflova K., Li H., Chen J., et al., Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem 18:379-88 (2007)PubMedCentralPubMedGoogle Scholar
  274. 274.
    Funovics M., Weissleder R., and Tung C. H., Protease sensors for bioimaging. Anal Bioanal Chem 377:956-63 (2003)PubMedGoogle Scholar
  275. 275.
    Bremer C., Tung C. H., Bogdanov A., Jr., et al., Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222:814-8 (2002)PubMedGoogle Scholar
  276. 276.
    Allport J. R. and Weissleder R., Murine lewis lung carcinoma-derived endothelium expresses markers of endothelial activation and requires tumor-specific extracellular matrix in vitro. Neoplasia 5:205-17 (2003)PubMedCentralPubMedGoogle Scholar
  277. 277.
    Bremer C., Tung C. H., and Weissleder R., In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743-8 (2001)PubMedGoogle Scholar
  278. 278.
    Edgington L. E., Berger A. B., Blum G., et al., Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med. 15:967-73 (2009)PubMedCentralPubMedGoogle Scholar
  279. 279.
    Kizaka-Kondoh S., Itasaka S., Zeng L., et al., Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15:3433-41 (2009)PubMedGoogle Scholar
  280. 280.
    Manning H. C., Merchant N. B., Foutch A. C., et al., Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin Cancer Res 14:7413-22 (2008)PubMedCentralPubMedGoogle Scholar
  281. 281.
    Nagengast W. B., De Vries E. G., Hospers G. A., et al., In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48:1313-9 (2007)PubMedGoogle Scholar
  282. 282.
    Dijkers E. C., Kosterink J. G., Rademaker A. P., et al., Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/Neu immunopet imaging. J Nucl Med 50:974-81 (2009)PubMedGoogle Scholar
  283. 283.
    Mankoff D. A., Link J. M., Linden H. M., et al., Tumor receptor imaging. J Nucl Med 49 Suppl 2:149S-63S (2008)Google Scholar
  284. 284.
    Kawamura K., Yamasaki T., Yui J., et al., In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl Med Biol 36:239-46 (2009)PubMedGoogle Scholar
  285. 285.
    Kulbersh B. D., Duncan R. D., Magnuson J. S., et al., Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg 133:511-5 (2007)PubMedGoogle Scholar
  286. 286.
    Memon A. A., Jakobsen S., Dagnaes-Hansen F., et al., Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: A micro-PET study on mice with lung tumor xenografts. Cancer Res 69:873-8 (2009)PubMedGoogle Scholar
  287. 287.
    Gangloff A., Hsueh W. A., Kesner A. L., et al., Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18)F-Fluoropaclitaxel. J Nucl Med 46:1866-71 (2005)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departments of Radiology and MIPSStanford UniversityStanfordUSA

Personalised recommendations