Skip to main content

Solid-State Detectors for Small-Animal Imaging

  • Chapter
  • First Online:

Abstract

Semiconductor detector technology, initially developed for high energy physics applications, has found a distinctive role in high performance systems for X-ray and gamma-ray medical imaging applications, including small animal imaging. Single-Photon Emission Computed Tomography (SPECT) small animal imaging requires the development of compact detectors with intrinsically ultrahigh spatial resolution, high energy resolution and good detection efficiency, in addition to suitable radiation collimation strategies. This overall performance can only partly be guaranteed by scintillator based systems with photomultiplier tube readout, the most used technology at present for small animal SPECT scanners. On the other hand, with respect to scintillator based detectors, semiconductor detectors can offer a gain by approximately a factor two in energy resolution at typical radionuclide energies, a factor greater than two in intrinsic spatial resolution, and a comparable intrinsic detection efficiency, though usually at a reduced field of view. Moreover, their compactness could be crucial in devising animal “personalized” miniature scanners. An additional interesting feature of semiconductor based small animal SPECT scanners is that the detector technology can be used both for gamma-ray imaging and for X-ray imaging, when coupling the SPECT scanner to a low resolution X-ray CT scanner for anatomical registration. The requirement of high spatial resolution, coupled to high sensitivity, becomes also stringent in microPET systems, where semiconductor detectors could be the technology of choice for future high performance PET scanners.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrett HH and Hunter WCJ (2005) Detectors for small-animal SPECT I. In: Kupinski MA and Barrett HH (eds.), Small animal SPECT imaging, pp. 26–27. Springer, Heidelberg.

    Google Scholar 

  2. (eV Products 2009) http://www.evproducts.com/material_prop.pdf (accessed May 2009).

  3. Barrett HH, Eskin JD, and Barber HB (1995) Charge transport in arrays of semiconductor gamma-ray detectors. Phys Rev Lett 5: 156–159.

    Article  Google Scholar 

  4. Spartiotis K, Leppänen A, Pantsar T, Pyyhtiä J, Laukka P, Muukkonen K, Maännistö O, Kinnari J, and Schulman T 2005 A photon counting CdTe gamma- and x-ray camera. Nucl Instrum Methods Phys Res A 550: 267–277.

    Article  CAS  Google Scholar 

  5. Russo P, Mettivier G, Pani R, Pellegrini R, Cinti MN, and Bennati P (2009) Imaging performance comparison between a LaBr3:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera. Med Phys 36: 1298–1317.

    Article  CAS  PubMed  Google Scholar 

  6. Guerra P, Santos A, and Darambara DG (2009) An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging. J Phys D: Appl Phys 42: 175101.

    Article  Google Scholar 

  7. Prokesch M and Szeles C (2006) Accurate measurements of electrical bulk resistivity and surface leakage current of CdZnTe radiation detector crystals. J Appl Phys 100: 014503.

    Article  Google Scholar 

  8. Devanathan R, Corrales LR, Gao F, and Weber WJ (2006) Signal variance in gamma-ray detectors—A review. Nucl Instrum Methods Phys Res A 565: 637–649.

    Article  CAS  Google Scholar 

  9. “BrilLanCe™380 scintillation material,” Technical Data Sheet (2007) (available online at website http://www.detectors.saint-gobain.com/Media/Documents/S0000000000000001004/SGC_BrilLanCe_380_data_sheet.pdf) (accessed May 2009).

  10. AMPTEK website (http://www.amptek.com/CdTe.html) (accessed May 2009).

  11. Gagnon D, Zeng GL, Links JM, Griesmer JJ, and Valentino FC (2001) Design considerations for a new solid-state gamma-camera: SOLSTICE. Nuclear Science Symposium Conference Record, IEEE, vol. 2: 1156–1160.

    Google Scholar 

  12. Ogawa K, Hota A, Shuto K, Motomura N, Kobayashi H, Makino S, Nakahara T, and Kubo A (2006) Development of semiconductor gamma-camera system with CdZnTe detectors. Nuclear Science Symposium Conference Record, 2006, IEEE, vol. 4: 2426–2429.

    Google Scholar 

  13. Shulman T (2006) Si, CdTe and CdZnTe radiation detectors for imaging application. PhD thesis, University of Helsinki, Finland, 2006 (available online at website http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/schulman/sicdtean.pdf) (accessed May 2009).

  14. XCOM: Photon Cross Sections Database. Available online at website (http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html) (accessed May 2009).

  15. ACRORAD Co. website (http://www.acrorad.co.jp/us/cdte.html) (accessed May 2009).

  16. Heijne EHM (2001) Semiconductor micropattern pixel detectors: a review of the beginnings. Nucl Instrum Methods Phys Res A 465: 1–26.

    Article  CAS  Google Scholar 

  17. Institute of Experimental and Applied Physics, Czech Technical University, Prague, CZ. Available online at website (http://aladdin.utef.cvut.cz/ofat/Methods/Xray_radiography/XrayRadiography.html) (accessed May 2009).

  18. Mikulec B, Campbell M, Heijne E, Llopart X, and Tlustos L (2003) X-ray imaging using single photon processing with semiconductor pixel detectors. Nucl Instrum Methods Phys Res A 511: 282–286.

    Article  CAS  Google Scholar 

  19. Heijne EHM (2001) Future semiconductor detectors using advanced microelectronics with post-processing, hybridization and packaging technology. Nucl Instrum Methods Phys Res A 541: 274–285.

    Article  Google Scholar 

  20. Alimonti G, Andreazza A, Bulgheroni A, Corda G, Di Gioia S, Fiorello A, Gemme C, Koziel M, Manca F, Meroni C, Nechaeva P, Paoloni A, Rossi L, Rovani A, and Ruscino E (2006) Analysis of the production of ATLAS indium bonded pixel modules. Nucl Instrum Methods Phys Res A 565: 296–302.

    Article  CAS  Google Scholar 

  21. Szeles C, Soldner SA, Vydrin S, Graves J, and Bale DS (2008) CdZnTe semiconductor detectors for spectroscopic X-ray imaging. IEEE Trans Nucl Sci 55: 572–582.

    Article  CAS  Google Scholar 

  22. Ballabriga R, Campbell M, Heijne EHM, Llopart X, and Tlustos L (2007) The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans Nucl Sci 54: 1824–1829.

    Article  Google Scholar 

  23. Rönnquist C, Santps F, Toker O, Weilhammer P, Yoshioka K, Nygård E, Czermak E, Jalocha P, Dulinski W, and Hu Y (1994) Double-sided silicon microstrip detectors and low noise self-triggering multichannel readout chips for imaging applications. Nucl Instrum Methods Phys Res A 348: 440–443.

    Article  Google Scholar 

  24. Beccherle R Bertolucci E, Bisogni MG, Bottigli U, Collins T, Conti M, Del Guerra A, Fantacci ME, Gambaccini M, Kipnis I, Marchesini R, Marziani M, Rosso V, Russo P, Russo S, Stefanini A, Taibi A, and Tripiccione R (1996) Development of a digital radiography system based on silicon microstrip detector. Physica Medica XII: 17–24.

    Google Scholar 

  25. Speller RD, Royle GJ, Triantis FA, Manthos N, Van der Stelt PF, and di Valentin M (2001) Digital X-ray imaging using silicon microstrip detectors: a design study. Nucl Instrum Methods Phys Res A 457: 653–664.

    Article  CAS  Google Scholar 

  26. Bertolucci E, Conti M, Grossi G, Madonna G, Mancini E, Russo P, Caria M, Randaccio P, Del Guerra A, Gambaccini M, Marchesini R, Marziani M, Taibi A, Beccherle R, Bisogni MG, Bottigli U, Fantacci ME, Rosso V, Stefanini A, Tripiccione R, and Amendolia SR (1996) Autoradiography with silicon strip detectors. Nucl Instrum Methods Phys Res A 381: 527–530.

    Article  CAS  Google Scholar 

  27. Overdick M, Czermak A, Fischer P, Herzog V, Kjensmo A, Kugelmeier T, Ljunggren K, Nygård E, Pietrzik C, Schwan T, Strand S-E, Straver J, Weilhammer P, Wermes N, and Yoshioka K (1997) A Bioscope system using double-sided silicon microstrip detectors and self-triggering read-out chips. Nucl Instrum Methods Phys Res A 392: 173–177.

    Article  CAS  Google Scholar 

  28. Chmeissani M and Mikulec B (2001) Performance limits of a single photon counting pixel system. Nucl Instrum Methods Phys Res A 460: 81–90.

    Article  CAS  Google Scholar 

  29. Beekman FJ, McElroy DP, Berger F, Gambhir SS, Hoffman EJ, and Cherry SR (2002) Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes. Eur J Nucl Med 29: 933–938.

    Article  Google Scholar 

  30. Choong WS, Moses WW, Tindall CS, and Luke PN (2005) Design for a high-resolution small-animal SPECT system using pixelated Si:Li detectors for in 125I imaging. IEEE Trans Nucl Sci 52: 174–180.

    Article  CAS  Google Scholar 

  31. Accorsi R, Celentano L, Laccetti P, Lanza RC, Marotta M, Mettivier G, Montesi MC, Roberti G, and Russo P (2008) High resolution I-125 small animal imaging with a coded aperture and a hybrid pixel detector. IEEE Trans Nucl Sci 55: 481–490.

    Article  CAS  Google Scholar 

  32. Huang AB, Franc BL, Gullberg GT, and Hasegawa BH (2008) Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol 53: 2233–2252.

    Article  Google Scholar 

  33. Belcari N, Bisogni MG, Carpentieri C, Del Guerra A, Delogu P, Panetta D, Quattrocchi M, Rosso V, and Stefanini A (2007) Preliminary characterization of a single photon counting detection system for CT application. Nucl Instrum Methods Phys Res A 576: 204–208.

    Article  CAS  Google Scholar 

  34. Chmeissani M, Frojdh C, Gal O, Llopart X, Ludwig J, Maiorino M, Manach E, Mettivier G, Montesi MC, Ponchut C, Russo P, Tlustos L, and Zwerger A (2004) First experimental tests with a CdTe photon counting pixel detector hybridized with a Medipix2 readout chip. IEEE Trans Nucl Sci 51: 2379–2385.

    Article  CAS  Google Scholar 

  35. Blanchot G, Chmeissani M, Díaz A, Díaz F, Fernández J, García E, García J, Kainberger F, Lozano M, Maiorino M, Martínez R, Montagne JP, Moreno I, Pellegrini G, Puigdengoles C, Sentís M, Teres L, Tortajada M, and Ullán M (2006) Dear-Mama: a photon-counting X-ray imaging project for medical applications. Nucl Instrum Methods Phys Res A 569: 136–139.

    Article  CAS  Google Scholar 

  36. Autiero M, Celentano L, Cozzolino R, Laccetti P, Marotta M, Mettivier G, Montesi MC, Riccio P, Roberti G, and Russo P (2005) Experimental study on in vivo optical and radionuclide imaging in small animals. IEEE Trans Nucl Sci 52: 205–209.

    Article  CAS  Google Scholar 

  37. Funaki M, Ando Y, Jinnai R, Tachibana A, and Ohno R (2007) Development of CdTe detectors in Acrorad. International Workshop on Semiconductor PET. Unpublished. Available online at website (http://www.acrorad.co.jp/pdf/Development_of_CdTe_detectors.pdf) (accessed May 2009).

  38. Marks DG, Barber HB, Apotovsky BA, Augustine FL, Barrett HH, Dereniak EL, Doty FP, Eskin JD, Hamilton WJ, Matherson KJ, Venzon JE, Woolfenden JM, and Young ET (1996) A 48 × 48 CZT array with multiplexer readout. IEEE Trans Nucl Sci 43: 1253–1259.

    Article  CAS  Google Scholar 

  39. Matherson KJ, Barber HB, Barrett HH, Eskin JD, Dereniak EL, Marks DG, Woolfenden JM, Young ET, and Augustine FL (1998) Progress in the development of large-area modular 64 × 64 CdZnTe imaging arrays for nuclear medicine. IEEE Trans Nucl Sci 45: 354–358.

    Article  CAS  Google Scholar 

  40. Basolo S, Berar JF, Boudet N, Breugnoa P, Chantepia B, Clemens JC, Delpierre P, Dinkespiler B, Hustache S, Medjoubi K, Menouni M, Morel C, Pangaud P, and Vigeolas EA (2008) 20 k pixels CdTe photon-counting imager using XPAD chip. Nucl Instrum Methods Phys Res A 589: 268–274.

    Article  CAS  Google Scholar 

  41. Takahashi T, Wataname S, Kouda M, Sato G, Okada Y, Kubo S, Kuroda Y, Onishi M, and Ohno R (2001) High-resolution CdTe detector and applications to imaging devices. IEEE Trans Nucl Sci 48: 287–291.

    Article  CAS  Google Scholar 

  42. Meng L-J, Tan JW, Spartiotis K, and Schulman T (2009) Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector. Nucl Instrum Methods Phys Res A 604: 548–554.

    Article  CAS  Google Scholar 

  43. Mitani T, Nakamura H, Uno S, Takahashi T, Nakazawa K, Watanabe S, Tajima H, Nomachi M, Fukazawa Y, Kubo S, Kuroda Y, Onishi M, and Ohno R (2003) Large area Gamma-ray Imaging Detector Based on High Resolution CdTe Diode. IEEE Trans Nucl Sci 50: 1048–1052.

    Article  CAS  Google Scholar 

  44. Kastis GA, Wu MC, Balzer SJ, Wilson DW, Furenlid LR, Stevenson G, Barrett HH, Barber HB, Woolfenden JM, Kelly P, and Appleby M (2002) Tomographic small-animal imaging using a high-resolution semiconductor detector. IEEE Trans Nucl Sci 49: 172–175.

    Article  CAS  Google Scholar 

  45. Chambron J, Arntz Y, Eclancher B, Scheiber Ch, Siffert P, Hage Hali M, Regal R, Kazandjian A, Prat V, Thomas S, Warren S, Matz R, Jahnke A, Karman M, Pszota A, and Nemet L (2000) A pixelated γ-camera based on CdTe detectors clinical interests and performances. Nucl Instrum Methods Phys Res A 448: 537–549.

    Article  CAS  Google Scholar 

  46. Tsuchimochi M, Sakahara H, Hayama K, Funaki M, Ohno R, Shirahata T, Orskaug T, Maehlum G, Yoshioka K, and Nygard E (2003) A prototype small CdTe gamma camera for radioguided surgery and other imaging applications. Eur J Nucl Med Mol Imaging 30: 1605–1614.

    Article  PubMed  Google Scholar 

  47. Kastis GA, Furenlid LR, Wilson DW, Peterson TE, Barber HB, and Barrett HH (2004) Compact CT/SPECT small-animal imaging system. IEEE Trans Nucl Sci 51: 63–67.

    Article  Google Scholar 

  48. Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, Hunter WCJ, Liu Z, Woolfenden JM, and Barrett HH (2006) SemiSPECT: A small-animal single-photon emission computed tomography SPECT imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 33: 465–474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Parnham KB, Grosholz J, Davis RK, Vydrin S, and Cupec CA (2001) Development of a CdZnTe-based small field of view gamma camera. Proc SPIE 4508: 134–140.

    Article  CAS  Google Scholar 

  50. Wagenaar DJ, Chowdhury S, Engdahl JC, and Burckhardt DD (2003) Planar image quality comparison between a CdZnTe prototype and a standard NaI(Tl) gamma camera. Nucl Instrum Methods Phys Res A 505: 586–589.

    Article  CAS  Google Scholar 

  51. Eisen Y, Mardor I, Shor A, Baum Z, Bar D, Feldman G, Cohen H, Issac E, Haham-Zada R, Blitz S, Cohen Y, Glick B, Falk R, Roudebush S, and Blevis I (2002) NUCAM3—A gamma camera based on segmented monolithic CdZnTe Detectors. IEEE Trans Nucl Sci 49: 1728–1732.

    Article  CAS  Google Scholar 

  52. Eisen Y, Shor A, and Mardor I (2004) CdTe and CdZnTe x-ray and gamma-ray detectors for imaging systems. IEEE Trans Nucl Sci 51: 1191–1198.

    Article  CAS  Google Scholar 

  53. Griesmer JJ, Kline B, Grosholz J, Parnham K, and Gagnon D (2001) Performance evaluation of a new CZT detector for nuclear medicine: SOLSTICE. Nuclear Science Symposium Conference Record, IEEE, vol. 2: 1050–1054.

    Google Scholar 

  54. Azman S, Gjaerum J, Meier D, Muftuler LT, Maehlum G, Nalcioglu O, Patt BE, Sundal B, Szawlowski M, Tsui BMW, Wagenaar DJ, and Wang Y (2007) A nuclear radiation detector system with integrated readout for SPECT/MR small animal imaging. Nuclear Science Symposium Conference Record, IEEE, vol. 3: 2311–2317.

    Google Scholar 

  55. Mestais C, Baffert N, Bonnefoy JP, Chapuis A, Koenig A, Monnet O, Ouvrier Buffet P, Rostaing JP, Sauvage F, and Verger L (2001) A new design for a high resolution, high efficiency CZT gamma camera detector. Nucl Instrum Methods Phys Res A 458: 62–67.

    Article  CAS  Google Scholar 

  56. Barber HB, Barrett HH, Augustine F., Hamilton WJ, Apotovsky BA, Dereniak EL, Doty FP, Eskin JD, Garcia JP, Marks DG, Matherson KJ, Woolfenden JM, and Young ET (1997) Development of a 64 × 64 CZT array and associated readout integrated circuit for use in nuclear medicine. J Electron Mater 26: 765–772.

    Article  CAS  Google Scholar 

  57. Kastis GA, Barber HB, Barrett HH, Balzer SJ, Lu D, Marks DG, Stevenson G, Woolfenden JM, Appleby M, and Tueller J (2000) Gamma-ray imaging using a CdZnTe pixel array and a high-resolution, parallel-hole collimator. IEEE Trans Nucl Sci 47: 1923–1927.

    Article  Google Scholar 

  58. http://www.radiology.arizona.edu/CGRI/research-projects/animal.html (accessed May 2009).

  59. Peterson TE, Hyunki K, Crawford MJ, Gersham BM, Hunter WCJ, Barber HB, Furenlid LR, Wilson DW, Woolfenden JM, and Barrett HH (2002) SemiSPECT: a small-animal imaging system based on eight CdZnTe pixel detector. Nuclear Science Symposium Conference Record (2002), IEEE, vol. 3: 1844–1847.

    Google Scholar 

  60. http://www.radiology.arizona.edu/CGRI/research-projects/Adaptive_Modality_Imaging/adaptive_modality.html (accessed May 2009).

  61. Shokouhi S, Fritz MA, McDonald BS, Wilson M.D., Metzler SD, and Peterson TE (2006) Design of a Multi-Pinhole Collimator in a Dual-Headed, Stationary, Small-Animal SPECT. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 2399–2402.

    Google Scholar 

  62. Shokouhi S, Durko HL, Fritz MA, Furenlid LR, and Peterson TE (2006) Thick silicon strip detectors for small-animal SPECT imaging. Nuclear Science Symposium Conference Record, IEEE, vol. 6: 3562–3566.

    Google Scholar 

  63. McDonald BS, Shokouhi S, Barrett HH, and Peterson TE (2006) Multi-energy, single-isotope pinhole imaging using stacked detectors. Nuclear Science Symposium Conference Record (2006), IEEE, vol. 3: 1797–1801.

    Google Scholar 

  64. Shokouhi S, McDonald BS, Durko HL, Fritz MA, Furenlid LR, Peterson TE (2007) Performance characteristics of thick silicon double sided strip detectors. Nuclear Science Symposium Conference Record, IEEE, vol. 2: 1656–1660.

    Google Scholar 

  65. Shokouhi S, Fritz MA, McDonald BS, Durko HL, Furenlid LR, Wilson DW, and Peterson TE (2007) A silicon SPECT system for molecular imaging of the mouse brain. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 2782–2784.

    Google Scholar 

  66. Shokouhi S, Wilson DW, Pham W, and Peterson TE (2007) System evaluation for in vivo imaging of amyloid beta plaques in a mouse brain using statistical decision theory. Nuclear Science Symposium Conference Record, IEEE, vol. 6: 4528–4530.

    Google Scholar 

  67. http://www.radiology.arizona.edu/CGRI/SiliSPECT.pdf (accessed May 2009).

  68. Shokouhi S, Metzler SD, Wilson DW, and Peterson TE (2009) Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high resolution SPECT. Phys Med Biol 54: 207–225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Accorsi R, Autiero M, Celentano L, Chmeissani M, Cozzolino R, Curion AS, Frallicciardi P, Laccetti P, Lanza RC, Lauria A, Maiorino M, Marotta M, Mettivier G, Montesi MC, Riccio P, Roberti G, and Russo P (2007) MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector. Nucl Instrum Methods Phys Res A 571: 44–47.

    Article  CAS  Google Scholar 

  70. Accorsi R, Curion AS, Frallicciardi P, Lanza RC, Lauria A, Mettivier G, Montesi MC, and Russo P (2007) Preliminary evaluation of the tomographic performance of the MediSPECT small animal imaging system. Nucl Instrum Methods Phys Res A 571: 415–418.

    Article  CAS  Google Scholar 

  71. Autiero M, Celentano L, Cozzolino R, Laccetti P, Marotta M, Mettivier G, Montesi MC, Riccio P, Roberti G, and Russo P (2006) Multimodal system for in vivo tumor imaging in mice. Proc SPIE 6191: 340–352.

    Google Scholar 

  72. Llopart X, Campbell M, Dinapoli R, SanSegundo D, and Pernigotti E (2002) Medipix2, a 64 k pixel read-out with 55 μm square elements working in single photon counting mode. IEEE Trans Nucl Sci 49: 2279–2283.

    Article  Google Scholar 

  73. Medipix2 collaboration website: www.cern.ch/medipix (accessed May 2009).

  74. Russo P (2002) Hybrid semiconductor pixel detectors for low- and medium-energy X- and gamma-ray single photon imaging using the Medipix read-out chip. In: Hornak JP (ed.), Encyclopedia of Imaging Science and Technology. Wiley Interscience, John Wiley & Sons, Inc., New York.

    Google Scholar 

  75. Tlustos L, Ballabriga R, Campbell M, Heijne E, Kincade K, Llopart X, and Stejskal P (2006) Imaging properties of the Medipix2 system exploiting single and dual energy thresholds. IEEE Trans Nucl Sci 53: 367–372.

    Article  Google Scholar 

  76. Mettivier G, Montesi MC, Sebastiano A, and Russo P (2006) High frame rate X-ray imaging with a 256 × 256 pixel single photon counting Medipix2 detector. IEEE Trans Nucl Sci 53: 1650–1655.

    Article  CAS  Google Scholar 

  77. Maiorino M, Pellegrini G, Blanchot G, Chmeissani M, Garcia J, Martinez R, Lozano M, Puigdengoles C, and Ullan M (2006) Charge sharing observations with a CdTe pixel detector irradiated with a 57Co source. Nucl Instrum Methods Phys Res A 563: 177–181.

    Article  CAS  Google Scholar 

  78. Pellegrini G, Chmeissani M, Maiorino M, Blanchot G, Garcia J, Lozano M, Martinez R, Puigdengoles C, Ullan M, and Casado P (2006) Performance limits of a 55-μm pixel CdTe detector. IEEE Trans Nucl Sci 53: 361–366.

    Article  CAS  Google Scholar 

  79. Pellegrini G, Maiorino M, Blanchot G, Chmeissani M, Garcia J, Lozano M, Martinez R, Puigdengoles C, and Ullan M (2007) Direct charge sharing observation in single-photon-counting pixel detector. Nucl Instrum Methods Phys Res A 573: 137–140.

    Article  CAS  Google Scholar 

  80. Zeng GL and Gagnon D (2004) CdZnTe strip detector SPECT imaging with a slit collimator. Phys Med Biol 49: 2257–2271.

    Article  Google Scholar 

  81. Gagnon D, Penn MS, Lee D, Urbain J-L, Chi-Hua T, Kline B, Bender PJ, Mercer DL, and Griesmer JJ (2002) Use of SOLSTICE rotating slat solid-state camera for small animal imaging. Nuclear Science Symposium Conference Record, IEEE, vol. 3: 1367–1369.

    Google Scholar 

  82. Moses WW Nuclear medical imaging: Techniques and challenges. Available online at website (http://instrumentationcolloquium.lbl.gov/Nuclear%20Medical%20Imaging.pdf) (accessed May 2009).

  83. Stickel JR and Cherry SR (2005) High-resolution PET detector design: modeling components of intrinsic spatial resolution. Phys Med Biol 50: 179–195.

    Article  PubMed  Google Scholar 

  84. Levin CS and Hoffman EJ (1999) Calculation of positron range and its effects on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44: 781–799.

    Article  CAS  PubMed  Google Scholar 

  85. Drezet A, Monnet O, Montémont G, Rustique J, Sanchez G, and Verger L (2004) CdZnTe detectors for the positron emission tomographic imaging of small animals. Nuclear Science Symposium Conference Record, IEEE, vol. 7: 4564–4568.

    Google Scholar 

  86. Conti M, Del Guerra A, Mazzei D, Russo P, Bencivelli W, Bertolucci E, Messineo A, Rosso V, Stefanini A, Bottigli U, Randaccio P, and Nelson WR (1992) Use of EGS4 Monte Carlo code to evaluate the response of HgI2 and CdTe semiconductor detectors in the diagnostic energy range. Nucl Instrum Methods Phys Res A 322: 591–595.

    Article  Google Scholar 

  87. Baldazzi G, Bollini D, Casali F, Chirco P, Donati A, Dusi W, Landini G, Rossi M, and Stephen JB (1993) Timing response of CdTe detectors. Nucl Instrum Methods Phys Res A 326: 319–324.

    Article  Google Scholar 

  88. Bertolucci E, Conti M, Curto CA, and Russo P (1997) Timing properties of CdZnTe detectors for positron emission tomography. Nucl Instrum Methods Phys Res A 400: 107–112.

    Article  CAS  Google Scholar 

  89. Drezet A, Monnet O, Mathy F, Montémont G, and Verger L (2007) CdZnTe detectors for small field of view positron emission tomographic imaging. Nucl Instrum Methods Phys Res A 571: 465–470.

    Article  CAS  Google Scholar 

  90. Vaska P, Bolotnikov A, Carini G, Camarda G, Pratte J-F, Dilmanian FA, Park S-J, and James RB (2005) Studies of CZT for PET Applications. Nuclear Science Symposium Conference Record, IEEE, vol. 5: 2799–2802.

    Google Scholar 

  91. Zavattini G, Cesca N, Di Domenico G, Moretti E, and Sabba N (2006) SiliPET: an ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks. Nucl Instrum Methods Phys Res A 568: 393–397.

    Article  CAS  Google Scholar 

  92. Auricchio N, Cesca N, Di Domenico G, Moretti E, Sabba N, Gambaccini M, Zavattini G, Andritschke R, Kanbach G, and Schopper F (2005) SiliPET: design of an ultra high resolution small animal PET scanner based on stacks of semiconductor detectors. Nuclear Science Symposium Conference Record, IEEE, vol. 5: 3010–3013.

    Google Scholar 

  93. Gola A, Fiorini C, Di Domenico G, Zavattini G, and Auricchio N (2006) An ASIC circuit for timing measurements with strip detectors, designed for the SiliPET project. Nuclear Science Symposium Conference Record, IEEE, vol. 1: 370–374.

    Google Scholar 

  94. Auricchio N, Di Domenico G, Zavattini G, Gola A, Fiorini C, Frigerio M, Ambrosi G, Ionica M, Fiandrini E, Zorzi N, and Boscardin M (2007) First measurements of the SiliPET project: a small animal PET scanner based on stacks of silicon detectors. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 2926–2929.

    Google Scholar 

  95. Auricchio N.; Di Domenico G.; Milano L.; Malaguti R.; Ambrosi G, Ionica M, Fiandrini E, Zorzi N, Boscardin M, and Zavattini G (2008) Experimental measurements for the SiliPET project: a small animal PET scanner based on stacks of silicon detectors. Nuclear Science Symposium Conference Record, IEEE: 366–369.

    Google Scholar 

  96. Kikuchi Y, Ishii K, Yamazaki H, Matsuyama S, Yamaguchi T, Yamamoto Y, Sato T, Aoki Y, and Aoki K (2005) Preliminary report on the development of a high resolution PET camera using semiconductor detectors. Nucl Instrum Methods Phys Res B 241: 727–731.

    Article  CAS  Google Scholar 

  97. Kikuchi Y, Ishii K, Yamazaki H, Matsuyama S, Momose G, Ishizaki A, Kisaka J, and Kudo T (2006) Feasibility of ultra high resolution better than 1 mm FWHM of small animal PET by using CdTe detector arrays. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 2454–2457.

    Google Scholar 

  98. Ishii K, Kikuchi Y, Matsuyama S, Kanai Y, Kotani K, Ito T, Yamazaki H, Funaki Y, Iwata R, Itoh M, Kanai Km Hatazawa J, Itoh N, Tanizaki N, Amano D, Yamada M, and Yamaguchi T (2007) First achievement of less than 1 mm FWHM resolution in practical semiconductor animal PET scanner. Nucl Instrum Methods Phys Res A 576: 435–440.

    Article  CAS  Google Scholar 

  99. Kikuchi Y, Ishii K, Terakawa A, Matsuyama S, Yamazaki H, Hatazawa J, and Kotani K (2007) Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 2669–2672.

    Google Scholar 

  100. Kikuchi Y, Ishii K, Yamazaki H, Matsuyama S, Nakhostin M, Sakai T, Nakamura K, and Kouno M (2008) Fundamental study of two-dimensional position sensitive CdTe detector for PET camera. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 4924–4926.

    Google Scholar 

  101. Kim H, Cirignano LJ, Dokhale P, Bennet P, Stickel JR, Mitchell GS, Cherry SR, Squillante M, and Shah K (2006) CdTe orthogonal strip detector for small animal PET. Nuclear Science Symposium Conference Record, IEEE, vol. 6: 3827–3830.

    Google Scholar 

  102. Mitchell GS, Sinha S, Stickel JR, Bowen SL, Cirignano LJ, Dokhale P, Kim H, Shah K, and Cherry SR (2008) CdTe strip detector characterization for high resolution small animal PET. IEEE Trans Nucl Sci 55: 870–876.

    Article  CAS  Google Scholar 

  103. Yanagita N, Morimoto Y, Ishitsu T, Suzuki A, Takeuchi W, Seino T, Takahashi I, Ueno Y, Amemya K, Inoue S, Suzuki M, Kozawa F, Kubo N, and Tamaki N (2007) Physical performance of a prototype 3D PET scanner using CdTe detectors. Nuclear Science Symposium Conference Record, IEEE, vol. 4: 2665–2668.

    Google Scholar 

  104. Ueno Y, Morimoto Y, Tsuchiya K, Yanagita N, Kojima S, Ishitsu T, Kitaguchi H, Kubo N, Zhao S, Tamaki N, and Amemiya K (2009) Basic performance test of a prototype PET scanner using CdTe semiconductor detectors. IEEE Trans Nucl Sci 56: 24–28.

    Article  Google Scholar 

  105. Hall CJ, Nolan PJ, Boston AJ, Helsby WI, Berry A, Lewis RA, Gillam J, Beveridge T, Mather AR, Turk G, Norman J, and Gross S (2003) A gamma tracking detector for nuclear medicine. Nuclear Science Symposium Conference Record, IEEE, vol. 3: 1877–1881.

    Google Scholar 

  106. Boston HC, Boston AJ, Cooper RJ, Cresswell J, Grint AN, Mather AR, Nolan PJ, Scraggs DP, Turk G, Hall CJ, Lazarus I, Berry A, Beveridge T, Gillam J, and Lewis R (2007) Characterization of the SmartPET planar Germanium detectors. Nucl Instrum Methods Phys Res A 579: 104–107.

    Article  CAS  Google Scholar 

  107. Gillam J, Beveridge T, Svalbe I, Grint A, Cooper R, Boston A, Boston H, Nolan P, Hall C, and Lewis R (2008) Compton imaging using the SmartPET detectors. Nuclear Science Symposium Conference Record, IEEE: 624–628.

    Google Scholar 

  108. http://ns.ph.liv.ac.uk/imaging-group/group-members/andrew-mather.php (accessed August 2009).

  109. Cooper RJ, Boston AJ, Boston HC, Cresswell J, Grint AN, Mather AR, Nolan PJ, Scraggs DP, Turk G, Hall CJ, Lazarus I, Berry A, Beveridge T, Gillam J, and Lewis RA (2007) SmartPET: applying HPGe and pulse shape analysis to small-animal PET. Nucl Instrum Methods Phys Res A 579: 313–317.

    Article  CAS  Google Scholar 

  110. Cooper RJ, Turk G, Boston AJ, Boston HC, Cresswell J, Mather AR, Nolan PJ, Hall CJ, Lazarus I, Simpson J, Berry A, Beveridge T, Gillam J, and Lewis RA (2007) Position sensitivity of the first SmartPET HPGe detector. Nucl Instrum Methods Phys Res A 573: 72–75.

    Article  CAS  Google Scholar 

  111. Cooper RJ, Boston AJ, Boston HC, Cresswell JR, Grint AN, Harkness LJ, Nolan PJ, Oxley DC, D.P. Scraggs DP, Lazarus I, Simpson J, Dobson J (2008) Charge collection performance of a segmented planar high-purity germanium detector. Nucl Instrum Methods Phys Res A 595:401–409.

    Google Scholar 

  112. Cooper RJ, Boston AJ, Boston HC, Cresswell J, Grint AN, Harkness LJ, Nolan PJ, Oxley DC, Scraggs DP, Mather AR, Lazarus I, and Simpson J (2009) Positron emission tomography imaging with the SmartPET system. Nucl Instrum Methods Phys Res A 606: 523–532.

    Article  CAS  Google Scholar 

  113. Peyret O (2006) Towards digital X-ray imaging. Available online at website(http://www.minatec-crossroads.com/pdf-AR/Peyret.pdf) (accessed August 2009).

  114. CIMA Collaboration website (http://www.cima-collaboration.org).

  115. Park S-J, Rogers WL and Clinthorne NH (2007) Design of a very high-resolution small animal PET scanner using a silicon scatter detector. Phys Med Biol 52: 4653–4677.

    Article  CAS  PubMed  Google Scholar 

  116. Clinthorne N (2009) Methods for High Resolution PET. Stanford Linear Accelerator Center, Advanced Instrumentation Seminar, 1April 2009. Available online at website (http://www-group.slac.stanford.edu/ais/publicDocs/presentation113.pdf) (accessed August 2009).

  117. Park S-J, Rogers WL, Huh S, Kagan H, Honscheid K, Burdette D, Chesi E, Lacasta C, Llosa G, Mikuz M, Studen A, Weilhammer P, and Clinthorne NH (2007) A prototype of very high-resolution small animal PET scanner using silicon pad detectors. Nucl Instrum Methods Phys Res A 570: 543–555.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Park S-J, Rogers WL, Huh S, Kagan H, Honscheid K, Burdette D, Chesi E, Lacasta C, Llosa G, Mikuz M, Studen A, Weilhammer P, and Clinthorne NH (2007) Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors. Phys Med Biol 52: 2807–2826.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russo, P., Del Guerra, A. (2014). Solid-State Detectors for Small-Animal Imaging. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_2

Download citation

Publish with us

Policies and ethics