Skip to main content

Dual-Modality Preclinical SPECT/MRI Instrumentation

  • Chapter
  • First Online:
Molecular Imaging of Small Animals

Abstract

Single photon emission tomography (SPET or SPECT) and magnetic resonance imaging (MRI) are in use routinely in hospitals worldwide. Each of these modalities is steadily growing in study volume and makes a major contribution to healthcare, with approximately 40 million SPECT and 60 million MRI patient exams completed every year. Also in the preclinical research field both SPECT and MRI are found to play important roles, with an installed base of about 200 microSPECT and 400 small animal MRI systems in use as of the beginning of 2009. The high magnetic field strengths of modern MRI machines, both clinical and preclinical, preclude the use of conventional photomultiplier-tube based SPECT equipment in the vicinity of the magnet. If a patient or a laboratory animal is to be imaged by both modalities, the two studies must be done in separate imaging sessions—always in different rooms and often in different departments and sometimes even in different buildings within a medical facility. Combined SPECT/MRI imaging is important since non-invasive probing of intact, living biological organisms—human or laboratory animal—bridges the gap between exponentially growing understanding of molecular and genetic mechanisms and the phenotypical embodiments of diseases and their response to treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known as Breast-Specific Gamma Imaging (BSGI)

  2. 2.

    ADME-Tox stands for Absorption, Distribution, Metabolism, Elimination, and Toxicity.

  3. 3.

    Varian, Inc. (Palo Alto, California) and Bruker Biospin GmbH (Ettingen, Germany are the primary vendors of preclinical MRI instruments.

  4. 4.

    Silicon photomultipliers (SiPMs) and multi-pixel photon counters (MPPCs) are two names for silicon photosensors operated in Geiger-mode.

  5. 5.

    For example, the Triumph™ (Gamma Medica-Ideas, Inc.) preclinical microSPECT system uses 4 heads, with 25 modules per head, and 256 CZT pixels per module, for a total of 25,600 pixels.

References

  1. Hruska CD, Phillips SW, Whaley DH, Rhodes DJ and O’Connor MK (2008) Molecular breast imaging: use of a dual-head dedicated gamma camera for detection of small breast tumors. Am J Roentgenol 191(6):1805–1815.

    Article  Google Scholar 

  2. Brassell SA (2005) Update on magnetic resonance imaging, Prostascint, and novel imaging in prostate cancer. Curr Opin Urol 15(3):163–166.

    Article  PubMed  Google Scholar 

  3. Bander NH, Trabulsi EJ, Kostakoglu L et al (2003) Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 170:1717–1721.

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee SR, Foss CA, Mease RC et al (2007) Synthesis and evaluation of 99mTc/Re labeled PSMA inhibitors. J Nucl Med 48(Suppl 2):18P.

    Google Scholar 

  5. Shukla-Dave A, Hricak H, Ishill NM et al (2009) Correlation of MR imaging and MR spectroscopic imaging findings with Ki-67, phosphor-67, phosphor-Akt, and androgen receptor expression in prostate cancer. Radiology 250:803–812.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Saeed S, Yao M, Philip B and Blend M (2006) Localizing hyperfunctioning parathyroid tissue: MRI or nuclear study or both? Clin Imaging 30(4):257–265.

    Article  PubMed  Google Scholar 

  7. Eslamy HK and Ziessman HA (2008) Parathyroid scintigraphy in patients with primary hyperparathyroidism: 99mTc sestamibi SPECT and SPECT/CT. Radiographics 28(5):1461–1476.

    Article  PubMed  Google Scholar 

  8. Neumann DR, Obuchowski NA and DiFilippo FP (2008) Preoperative 123I/99mTc-sestamibi subtraction SPECT and SPECT/CT in primary hyperparathyroidism. J Nucl Med 49: 2012–2017.

    Article  PubMed  Google Scholar 

  9. Wagenaar DJ, Kapusta M, Li J and Patt BE (2006) Rationale for the combination of nuclear medicine with magnetic resonance for preclinical imaging. Technol Cancer Res Treat 5: 343–350.

    PubMed  Google Scholar 

  10. Lecomte R (2004) Technology challenges in small animal PET imaging. Nucl Instrum Methods Phys Res A527 (1–2):157–165.

    Article  Google Scholar 

  11. Ito H, Koyama M, Goto R et al (1995) Cerebral blood flow measurement with 123I-IMP SPECT, calibrated standard input function and venous blood sampling. J Nucl Med 36(12):2339–2342.

    CAS  PubMed  Google Scholar 

  12. Fritz-Hansen T, Rostrup E, Larsson HBW et al (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36(2):225–231.

    Article  CAS  PubMed  Google Scholar 

  13. Ribot EJ, Miraux S, Delville MH et al (2009) Study of the MR relaxation of microglia cells labeled with Gd-DTPA-bearing nanoparticles. Contrast Media Mol Imaging 4(3):109–117.

    Article  CAS  PubMed  Google Scholar 

  14. Zaidi H (2007) Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244:639–642.

    Article  PubMed  Google Scholar 

  15. Martinez-Möller A, Souvatzoglou M, Delso G et al (2009) Tissue Classification as a Potential Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT Data. J Nucl Med 50:520–526.

    Article  PubMed  Google Scholar 

  16. Yong Z, Fessler JA, Clinthorne NH and Rogers WL (1994) Joint estimation for incorporating MRI anatomic images into SPECT reconstruction. Proc IEEE Nucl Sci Symp/Med Imag Conf 3:1256–1260.

    Google Scholar 

  17. Calvini P, Vitali P, Nobili F and Rodriquez G (2001) Enhancement of SPECT reconstructions by means of coregistered MR data. IEEE Trans Nucl Sci 48(3, part 2):750–755.

    Article  Google Scholar 

  18. Colin A and Boire JY (1997) MRI-SPECT image fusion for the synthesis of high resolution functional images: a prospective study. Proceedings of the 19th Annual International Conference of the IEEE 2:499–501.

    Google Scholar 

  19. Knutsson L, Boerjesson S, Larsson EM et al (2007) Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Mag Res Imag 26(4):913–920.

    Article  Google Scholar 

  20. Seo Y, Kurhanewicz J, Franc BL, Hawkins RA and Hasegawa BH (2005) Improved prostate cancer imaging with SPECT/CT and MRI/MRSI. IEEE Trans Nucl Sci 52(5, part 1):1316–1320.

    Article  Google Scholar 

  21. Breton E, Choquet C, Goetz C et al (2007) Dual SPECT/MR imaging in small animals. Nucl Instrum Methods Phys Res A571 (1–2):446–448.

    Google Scholar 

  22. Goetz C, Breton E, Choquet P, Israel-Jost V and Constantinesco A (2008) A. SPECT low-field MRI system for small-animal imaging. J Nucl Med 49:88–93.

    Article  PubMed  Google Scholar 

  23. Després P, Izaguirre EW, Siyuan L et al (2007) Evaluation of an MR-compatible CZT detector. Proc IEEE Nucl Sci Symp/Med Imag Conf 6:4324–4326.

    Google Scholar 

  24. Meng LJ, Tan JW and Fu G (2007) Design study of an MRI compatible ultra-high resolution SPECT for in vivo mice brain imaging. Proc IEEE Nucl Sci Symp/Med Imag Conf 4:2956–2960.

    Google Scholar 

  25. Burle Industries Inc (1980) Photomultiplier Handbook. printed in U.S.A.

    Google Scholar 

  26. Amsler C et al (2008) Particle Detectors. Physics Letters B667 (1) available on the Particle Data Group website URL: http://pdg.lbl.gov/.

  27. Ashcroft NW and Mermin ND (1976) in: Solid State Physics. Saunders College Publishing.

    Google Scholar 

  28. Lutz G (2001) Semiconductor Radiation Detectors. Device Physics. Springer 2nd Edition.

    Google Scholar 

  29. Bartsch V, de Boer W, Bol J et al (2003) An algorithm for calculating the Lorentz angle in silicon detectors. Nucl Instrum Methods Phys Res A497:389–396.

    Article  Google Scholar 

  30. Dorenbos SE, Weber MJ, Bourret-Courchesne E and Klintenberg MK (2003) The quest for the ideal inorganic scintillator. Nucl Instrum Methods Phys Res A505:111–117.

    Google Scholar 

  31. Yamamoto S, Kuroda K and Senda M (2003) Scintillator selection for MR-Compatible Gamma Detectors. IEEE Trans Nucl Sci 50(5, part 2):1683–1685.

    Article  CAS  Google Scholar 

  32. Lecoq P (2009) New crystal technologies for novel calorimeter concepts. J Phys Conference Series. 160:paper 012016. Online at www.iop.org/EJ/toc/1742-6596/160/1.

  33. Renker D (2007) New trends on photodetectors. Nucl Instrum Methods Phys Res A571:1–6.

    Article  Google Scholar 

  34. Berard P, Bergeron M, Pepin CM et al (2009) Development of a 64-channel APD detector module with individual pixel readout for submillimetre spatial resolution in PET. Nucl Instrum Methods Phys Res A610:20–23.

    Article  Google Scholar 

  35. Pichler BJ, Judenhofer MS, Catana C et al (2006) Performance Test of an LSO-APD Detector in a 7-T MRI Scanner for Simultaneous PET/MRI. J Nucl Med 47:639–647.

    PubMed  Google Scholar 

  36. Schaart DR, van Dam HT, Seifert S et al (2009) A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol 54:3501–3512.

    Article  CAS  PubMed  Google Scholar 

  37. Majewski S, Proffitt J, McKisson J et al (2009) Imaging Tests with Silicon Photomultipliers Made from MPPC Arrays in Magnetic Fields up to 14 Tesla. IEEE Nucl Sci Symp/Med Imag Conf, abstract M13–249.

    Google Scholar 

  38. Moszynski M, Balcerzyk M, Czarnacki W et al (2004) Intrinsic Energy Resolution and Light Yield Nonproportionality of BGO. IEEE Trans Nucl Sci 51(3, part 3):1074–1079.

    Article  CAS  Google Scholar 

  39. Hamamura MJ, Ha SH, Roeck WW et al (2009) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol in press.

    Google Scholar 

  40. Mikkelsen S, Meier D, Maehlum G et al (2008) Low-Power and Low-Noise Multi-Channel ASIC for X-ray and Gamma Ray Spectroscopy. Proc 2nd Int Workshop Analog Mixed Signal Integrated Circuits for Space Applications AMICSA.

    Google Scholar 

  41. Azman S, Gjaerum J, Meier D et al (2007) A Nuclear Radiation Detector System with Integrated Readout for SPECT/MR Small Animal Imaging. Proc IEEE Nucl Sci Symp/Med Imag Conf 3:2311–2317.

    Google Scholar 

  42. Strul D, Cash D, Keevil SF et al (2003) Gamma Shielding Materials for MR-Compatible PET. IEEE Trans Nucl Sci 50(1, part 1):60–69.

    Article  CAS  Google Scholar 

  43. Rogulski MM, Barber HB, Barrett HH et al (1993) Ultra-High-Resolution Brain SPECT Imaging: Simulation Results. IEEE Trans Nucl Sci 40(4, part 1–2):1123–1129.

    Article  CAS  Google Scholar 

  44. Schaefers G (2008) Testing MR safety and compatibility – An Overview of the Methods and Current Standards. IEEE Eng Med Biol Mag, 27: 23–27.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the following individuals for their substantial contributions to the SPECT/MRI progress: Benjamin M.W. Tsui, Orhan Nalcioglu, Si Chen, Mark Hamamura, Jingyan Xu, Werner Roeck, Yuchuan Wang, Seung-Hoon Ha, Samir Chowdhury, Gunnar Maehlum, Bjorn Sundal, Jon Gjaerum, Marek Szawlowski, Maciej Kapusta, and Ryan Gomez. Funding from the U.S. NIH NIBIB Grant R44 EB006712 and the Research Council of Norway is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagenaar, D.J., Meier, D., Patt, B.E. (2014). Dual-Modality Preclinical SPECT/MRI Instrumentation. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_14

Download citation

Publish with us

Policies and ethics