Advertisement

Scintillation Detectors for Small-Animal Imaging

  • Tom K. Lewellen
  • Robert Miyaoka
Chapter

Abstract

The detection of high energy photons (i.e. gamma rays or X-rays) is one of the main tools in small animal imaging. Imaging systems with external radiation sources (e.g., X-ray computed tomography—CT) and internal sources (e.g., single photon emission computed tomography—SPECT; and positron emission tomography—PET) are used routinely in pre-clinical investigations and are under active development both commercially and in research laboratories. In all cases, the detection process requires conversion of the energy carried by the photon into some sort of electrical signal. Further, the conversion process needs to be efficient and provide information on the amount of energy deposited (to allow discrimination of events by the amount of energy carried by the photon). For imaging systems, the detector must also provide spatial position information (e.g., the point in the detector that the photon interacted). For this chapter, we will not address optical light systems, but focus only X-ray and gamma ray technologies.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Positron Emission Tomography Imaging Positron Emission Tomography System Positron Emission Tomography Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank all the members of the Nuclear Medicine Physics Group at the University of Washington for making it possible for us to find the time to write this chapter—and for their insight and good work that has allowed our laboratory to work on detector and scanner development so consistently over the years. We also wish to acknowledge the support of the NIH, DOE, GE Medical Systems, Philips Medical Systems, Altera, and Zecotek Photonics in our research in detectors and electronics.

References

  1. 1.
    Cherry, S.R.: “In vivo molecular and genomic imaging: new challenges for imaging physics.”, Phys. Med. Biol. 49, pp. R13-48 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    Maas, M.C., Schaart, D.R., van der Lann, D.J., Bruyndonckx, P., Lemaitre, C., Beekman, F.J., van Ekjk, C.W.E.: “Monolithic scintillator PET detectors with intrinsic depth-of-interaction correction”, Phys. Med. Biol. 54, pp. 1893 - 908 (2009)PubMedCrossRefGoogle Scholar
  3. 3.
    Eriksson, L., Melcher, C.L., Eriksson, M., Rothfuss, H., Grazioso, R., Aykac, M.: “Design considerations of phoswich detectors for high resolution positron emission tomography”, IEEE Trans. Nucl. Sci. 56, pp. 182 - 8 (2009)CrossRefGoogle Scholar
  4. 4.
    Ueno, Y., Morimoto, Y., Tsuchiya, K., Yanagita, N., Kojima, S., Ishitsu, T., Kitaguchi, H., Kubo, N., Zhao, S., Tamaki, N., Amemiya, K.: “Basic performance test of a prototype PET scanner using CdTe semiconductor detectors”, IEEE Trans. Nucl. Sci. 56, pp. 24 - 8 (2009)CrossRefGoogle Scholar
  5. 5.
    Lewellen, T.K.: “Recent Developments in PET detector technology”, Phys. Med. Biol. 53, pp. R287-R317 (2008)PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Leroy, C.: “Review of radiation detectors”, AIP Conf. Proc. 958, pp. 92 - 100 (2007)CrossRefGoogle Scholar
  7. 7.
    D’Ambrosio, C., Anulli, F., Bencivenni, G., Domenici, D., Felici, G., Morone, M.C., Murtas, F.: “A hybrid parallel plate gas Counter for medical imaging”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 572, pp. 244 - 5 (2007).Google Scholar
  8. 8.
    Couceiro, M., Blanco, A., Ferreira Nuno, C., Ferreira Marques, R., Fonte, P., Lope, L.: “RPC-PET: Status and perspectives”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 580, pp. 915 - 918 (2007).Google Scholar
  9. 9.
    Hadong, K., Cirignano, L., Dokhale, P., Bennett, P., Stickel, J.R., Mitchell, G.S., Cherry, S.R., Squillante, M., Shah, K.: “CdTe orthogonal strip detector for small animal PET”, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, pp. 3827 - 3830 (2007)Google Scholar
  10. 10.
    Boston, H.C., Boston, A.J., Cooper, R.J., Cresswell, J., Grint, A.N., Mather, A.R., Nolan, P.J., Scraggs, D.P., Turk, G., Hall, C.J., Lazarus, I., Berry, A., Beveridge, T., Gillam, J., Lewis, R.: “Characterization of the SmartPET planar Germanium detectors”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 579, pp. 104 - 107 (2007).Google Scholar
  11. 11.
    Arnaud, D., Olivier, M., Francoise, M., Guillaume, M., Loick, V.: “CdZnTe detectors for small field of view positron emission tomographic imaging”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 571, pp. 465 - 470 (2007).Google Scholar
  12. 12.
    Doke, T., Kikuchi, J., Nishikido, F.: “Time-of-flight positron emission tomography using liquid xenon scintillation”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 569, pp. 863 - 71 (2006).Google Scholar
  13. 13.
    Burnham, C., Bradshaw, J., Kaufman, D., Chesler, D., Brownell, G.L.: “One dimensional scintillation cameras for positron ECT ring detectors”, IEEE Trans Nucl. Sci. NS-28, pp. 109-113 (1981)CrossRefGoogle Scholar
  14. 14.
    Hoffman, E.J., Phelps, M.E., Huang, S.C., Kuhl, D.E.: “A new tomograph for quantitative positron emission computed tomography of the Brain”, IEEE Trans. Nucl. Sci. NS-28, pp. 99-103 (1981)CrossRefGoogle Scholar
  15. 15.
    Ter-Pogossian, M.M., Ficke, D.C., Yamamoto, M., Hood Sr., J.T.: “Super PETT I: a positron emission tomograph utilizing photon time-of-flight information”, IEEE Trans. Med. Imag. MI-1, pp. 179-186 (1982)CrossRefGoogle Scholar
  16. 16.
    Hoffman, E.J., Ricci, A.R., van der Stee, L.M.A.M., Phelps, M.E.: “ECAT III--basic design considerations”, IEEE Trans. Nucl. Sci. NS-30, pp. 729-733 (1983)Google Scholar
  17. 17.
    Moses, W.W., Derenzo, S.E., Geyer, A.B., Huesman, R.H., Uber, D.C.: “The tuning algorithms used by the Donner 600 crystal tomograph”, IEEE Trans. Nucl. Sci. 36, pp. 1025-1029 (1989)CrossRefGoogle Scholar
  18. 18.
    Joung, J., Miyaoka, R.S., Kohlmyer, S.G., Lewellen, T.K.: “ML based positioning algorithms for scintillation cameras”, IEEE Nuclear Science Symposium and Medical Imaging Conference pp. 1455-1459 (1999)Google Scholar
  19. 19.
    Milster, T.D., Selberg, L.A., Barrett, H.H., Landesman, A.L., Seacat III, R.H.: “Digital position estimation for the modular scintillation camera”, IEEE Trans. Nucl. Sci. NS-32, pp. 748-752 (1985)CrossRefGoogle Scholar
  20. 20.
    Miyaoka, R.S., Sung-Kwan, J., Kisung, L.: “Detector light response modeling for a thick continuous slab detector”, J. Nucl. Sci. Technol. 45, pp. 634 - 638 (2008)Google Scholar
  21. 21.
    Cherry, S.R., Sorenson, J.A., Phelps, M.E.: Physics in Nuclear Medicine (Saunders, Orlando, 2003)Google Scholar
  22. 22.
    Braem, A., Chesi, E., Joram, C., Rudge, A., Seguinot, J., Weilhammer, P., De, L., R., Nappi, E., Lustermann, W., Schinzel, D., Johnson, I., Renker, D., Albrecht, S.: “Wavelength shifter strips and G-APD arrays for the read-out of the z-coordinate in axial PET modules”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 586, pp. 300 - 308 (2008).Google Scholar
  23. 23.
    Chaney, R.C., Fenyves, E.J., Nelson, G., Anderson, J.A., Antich, P.P., Atac, M.: “Application of scintillating fiber gamma ray detectors for medical imaging”, Proc. SPIE - Int. Soc. Opt. Eng. 1737, pp. 37 - 40 (1993)Google Scholar
  24. 24.
    Fernando, J.L., Xiong, R., Nguyen, T., Anderson, J.A., Arbique, G., Challa, S., Constantinescu, A., Fenyves, E.J., Kulkarni, P.V., Raheja, A., Thambi, G., Antich, P.P.: “Small animal PET imager built with plastic scintillating fibers”, Proc. SPIE - Int. Soc. Opt. Eng. 2551, pp. 102 - 127 (1995)Google Scholar
  25. 25.
    Kulkarni, P.V., Anderson, J.A., Antich, P.P., Prior, J.O., Zhang, Y., Fernando, J., Constantinescu, A., Goomer, N.C., Parkey, R.W., Fenyves, E., Chaney, R.C., Srivastava, S.C., Mausner, L.F.: “New approaches in medical imaging using plastic scintillating detectors”, Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. B79(1-4), pp. 921 - 925 (1993).Google Scholar
  26. 26.
    McIntyre, J.A., Allen, R.D., Aguiar, J., Paulson, J.T.: “A positron emission tomograph designed for 3/4 mm resolution”, IEEE Trans. Nucl. Sci. 42(4), pp. 1102 - 1106 (1995)CrossRefGoogle Scholar
  27. 27.
    Moszynski, M.: “Inorganic scintillation detectors in gamma-ray spectrometry”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 505, pp. 101-110 (2003).Google Scholar
  28. 28.
    H.O. Anger, in Instrumentation in Nuclear Medicine, edited by Hine, G.J. (Academic Press, New York, 1967), Chap. 19.Google Scholar
  29. 29.
    Karp, J.S., Mankoff, D.A., Muehllehner, G.: “A positron-sensitive detector for use in positron emission tomography”, Nucl. Instr. Meth. Phys. Res. A273, pp. 891-897 (1988)CrossRefGoogle Scholar
  30. 30.
    Muehllehner, G., Karp, J.S., Mankoff, D.A., Beerbohm, D., Ordonez, C.E.: “Design and performance of a new positron tomograph”, IEEE Trans Nucl. Sci. 35, pp. 670-674 (1988)CrossRefGoogle Scholar
  31. 31.
    Weber, M.J., Monchamp, R.R.: “Luminescence of Bi4Ge3O12: Spectral and decay properties”, J. Appl. Phys. 44, pp. 5495 - 9 (1973)Google Scholar
  32. 32.
    Melcher, C.L., Schweitzer, J.S.: “Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator”, IEEE Trans. Nucl. Sci. 39(4), pp. 502 - 5 (1992)CrossRefGoogle Scholar
  33. 33.
    van Eijk, C.W.E.: “Inorganic scintillators in medical imaging”, Phys. Med. Biol. 47, pp. 85 - 106 (2002)CrossRefGoogle Scholar
  34. 34.
    Surti, S., Karp, J.S., Daube-Witherspoon, M., Wener, M.: “Investigation of image quality and NEC in a TOF capable PET scanner.”, IEEE Nuclear Science Symposium and Medical Imaging Conference, pp 4032-4037 (2004)Google Scholar
  35. 35.
    Surti, S., Karp, S., Popescu, L.M., Daube-Witherspoon, E., Werner, M.: “Investigation of time-of-flight benefit for fully 3-DPET”, IEEE Trans. Med. Imaging 25, pp. 529 - 38 (2006)PubMedCrossRefGoogle Scholar
  36. 36.
    Manjeshwar, R.M., Yiping, S., Jansen, F.P.: “Image quality improvements with time-of-flight positron emission tomography for molecular imaging”, IEEE International Conference on Acoustics, Speech, and Signal Processing Vol. 5, pp. 853 - 6 (2005)Google Scholar
  37. 37.
    Surti, S., Kuhn, A., ME, W., Perkins, A.E., Kolthammer, J., Karp, J.S.: “Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities”, J Nucl. Med. 46, pp. 471-480 (2007)Google Scholar
  38. 38.
    van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K., Gudel, H.U.: “High-energy-resolution scintillator: Ce3+ activated LaBr3”, Appl. Phys. Lett. 79, pp. 1573 - 5 (2001)CrossRefGoogle Scholar
  39. 39.
    Birowosuto, M.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U.: “Scintillation properties of LuI3:Ce3+-high light yield scintillators”, IEEE Trans. Nucl. Sci. 52, pp. 1114 - 18 (2005)CrossRefGoogle Scholar
  40. 40.
    Kuhn, A., Surti, S., Karp, J.S., Newcomer, F.M., VanBerg, R., Muehllehner, G.: “Performance assessment of pixelated LaBr3 detector modules for TOF PET.”, IEEE Nuclear Science Symposium and Medical Imaging Conference, pp 3402-3406 (2004)Google Scholar
  41. 41.
    Porter-Chapman, Y.D., Bourret-Courchesne, E.D., Bizarri, G.A., Weber, M.J., Derenzo, S.E.: “Scintillation and luminescence properties of undoped and cerium-doped LiGdCl4 and NaGdCl4”, IEEE Trans. Nucl. Sci. 56, pp. 881 - 6 (2009)CrossRefGoogle Scholar
  42. 42.
    Derenzo, S.E., Boswell, M.S., Bourret-Courchesne, E., Boutchko, R., Budinger, T.F., Canning, A., Hanrahan, S.M., Janecek, M., Qiyu, P., Porter-Chapman, Y., Powell, J.D., Ramsey, C.A., Taylor, S.E., Lin-Wang, W., Weber, M.J., Wilson, D.S.: “Design and implementation of a facility for discovering new scintillator materials”, IEEE Trans. Nucl. Sci. 55, pp. 1458 - 63 (2008)CrossRefGoogle Scholar
  43. 43.
    Hawrami, R., Batra, A.K., Aggarwal, M.D., Roy, U.N., Groza, M., Cui, Y., Burger, A., Cherepy, N., Niedermayr, T., Payne, S.A.: “New scintillator materials (K2CeBr5 and Cs2CeBr5)”, J. Cryst. Growth 310, pp. 2099 - 102 (2008)Google Scholar
  44. 44.
    Van Loef, E.V., Yimin, W., Glodo, J., Brecher, C., Lempick, A., Shah, K.S.: “Recent advances in ceramic scintillators”, Nuclear Radiation Detection Materials, pp. 87 - 94 (2008)Google Scholar
  45. 45.
    Van Eijk, C.W.E.: “Inorganic scintillators in medical imaging detectors”, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 509, pp. 17-25 (2003).Google Scholar
  46. 46.
    Berard, P., Pepin, C.M., Rouleay, D., Cadorette, J., Lecomte, R.: “CT acquisition using PET detectors and electronics”, IEEE Trans. Nucl. Sci. 52, pp. 634-637 (2005)CrossRefGoogle Scholar
  47. 47.
    A. Nassalski, M. Moszynski, T. Szczesniak, D. Wolski, T. Batsch, The Road to the common PET/CT Detector, IEEE Trans Nucl. Sci. vol. 54, no. 3, pp. 1459-63, 2007CrossRefGoogle Scholar
  48. 48.
    Nassalski, A., Kapusta, M., Batsch, T., Wolski, D., Mockel, D., Enghardt, W., Moszynski, M.: “Comparative study of scintillators for PET/CT detectors”, IEEE Trans. Nucl. Sci 54, pp. 3-10 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of WashingtonSeattleUSA

Personalised recommendations