Skip to main content

Antiproton Production and Cooling

  • Chapter
  • First Online:
Accelerator Physics at the Tevatron Collider

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 985 Accesses

Abstract

The progress in the antiproton production and cooling has been absolutely essential for the success of the Collider Run II. Improvements of the Tevatron optics and operation resulted in a gradual increase in the fraction of antiprotons lost in the proton–antiproton collisions in the interaction points. However, by the middle of 2004, it achieved its maximum of about 30–40 % (see Fig. 7.1) determined mainly by the intra-beam scattering (IBS) and the beam–beam effects (see Chap. 8). Since that time, it stayed basically unchanged through the end of the Run II. Further progress in the luminosity could not be achieved without an increase in the antiproton production. Figure 7.2 presents the weekly antiproton production in the course of Run II. One can see that starting from the beginning of 2005, the rate of antiproton production grew significantly reflecting an increased priority for antiproton production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This value takes into account the finite value of beam betatron size and therefore is smaller than ±2.5 % quoted above (Sect. 7.1) and representing the momentum acceptance of particles with zero betatron amplitudes.

  2. 2.

    This value of the yield was measured by DCCT (direct current transformer). Additional ~5 % loss occurs in the course of beam debunching and stochastic cooling in Debuncher.

  3. 3.

    Note that in Chap. 6 we look for harmonic solutions in the form of exp(−iωt). That changes signs for the rule to traverse the poles. All equations of this chapter can be converted to this notation by their complex conjugation.

  4. 4.

    The damping achieves its maximum at near-complete band overlap. If the common mode signals are well suppressed, the cooling rate stays at this maximum with further increase of slip factor and band overlap. Achieving sufficient common mode suppression is not always possible. Therefore, most cooling systems operate without band overlap.

  5. 5.

    Note that the damping rate definition has been introduced for damping beam emittance. The damping rate for the amplitude is twice smaller. Consequently, for the case of complete band overlap, the amplitude damping rate is λ ≈ (f max − f min)/(4N).

  6. 6.

    Here the same as above, we assume that the thermal noise of amplifiers is negligible in comparison to the particle noise. It is well justified for the stacktail in normal operating conditions.

  7. 7.

    To distinguish the antiprotons accumulated in the Accumulator ring from those accumulated in the Recycler ring, the term “stash” was adopted to describe the antiprotons stored in the Recycler (hence “stack” refers to antiprotons accumulated in the Accumulator).

References

  1. B. Bayanov et al., Liquid lithium lens with high magnetic fields. in Proceedings of the 1999 I.E. PAC (New York, 1999), pp. 3086–3088

    Google Scholar 

  2. N.V. Mokhov, The MARS Code System User Guide, Version 13(95), Fermilab-FN-628 (1995); N.V. Mokhov et al., Fermilab-Conf-98/379 (1998); LANL Report LA-UR-98-5716 (1998); nucl-th/9812038 v2 16 Dec 1998; http://wwwap.fnal.gov/MARS/

  3. B.F. Bayanov et al., A lithium lens for axially symmetric focusing of high energy particles beams. NIM 190, 9–14 (1981)

    ADS  Google Scholar 

  4. T.A. Vsevolozskaya, The optimization and efficiency of antiproton production within a fixed acceptance. NIM 190, 479–486 (1981)

    ADS  Google Scholar 

  5. G. Dugan, P-bar Production and collection at the FNAL antiproton source. in Proceedings of the 13th International Conference of High Energy Accelerators, vol 2 (Novosibirsk, 1986), pp. 264–271

    Google Scholar 

  6. V. Nagaslaev, K. Gollwitzer, V. Lebedev, A. Valishev (Fermilab), V. Sajaev (Argonne). Measurement and optimization of the lattice functions in the Debuncher ring at Fermilab. in FERMILAB-CONF-06-200-AD (2006)

    Google Scholar 

  7. V.P. Nagaslaev, V.A. Lebedev, S.J. Werkema (Fermilab), Lattice optimization for the stochastic cooling in the Accumulator ring at Fermilab. in FERMILAB-CONF-07-712-AD (2007)

    Google Scholar 

  8. S. van der Meer, Rev. Mod. Phys. 57, 689 (1985)

    Article  ADS  Google Scholar 

  9. D. Möhl, Stochastic cooling, in CERN Accelerator School, Fifth Advanced Accelerator Physics Course, ed. by S. Turner (CERN, Geneva, 1995), pp. 587–671

    Google Scholar 

  10. J. Bisognano, C. Leemann, Stochastic cooling, in Summer School on High Energy Particle Accelerators, AIP Conference Proceedings 87, ed. by R.A. Carrigan et al. (American Institute of Physics, Melville, NY, 1982), pp. 584–655

    Google Scholar 

  11. V.V. Parkhomchuk, D.V. Pestrikov, Sov. Phys. Tech. Phys. 25(7), 818 (1980)

    Google Scholar 

  12. A. Jansson et al., in Proceedings of 2004 European PAC (Lucerne, Switzerland), pp. 2777–2779

    Google Scholar 

  13. F. Voelker et al., in Proceedings of 1983 PAC IEEE Conference (Santa Fe, NM), pp. 2262–2263 http://www.jacow.org/

  14. G. Lambertson et al., in Proceedings of 1985 PAC IEEE Conference (Vancouver, BC, Canada), pp. 2168–2170

    Google Scholar 

  15. D. McGinnis, Theory and design of microwave planar electrodes for stochastic cooling of particle neams. Microw. Opt. Tech. Lett. 4(11), 439–443 (1991)

    Article  Google Scholar 

  16. B. Autin et al., in Proceedings of 1987 PAC IEEE Conference (Washington, DC), pp. 1549–1551

    Google Scholar 

  17. D. McGinnis, Slotted waveguide slow-wave stochastic cooling arrays. in Proceedings of 1999 PAC IEEE Conference (New York), pp. 1713–1715

    Google Scholar 

  18. D. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005), pp. 489–493

    Google Scholar 

  19. B. Leskovar, Low-noise cryogenically cooled broad-band microwave preamplifiers. in 172nd Meeting of the Low Temperature Electronics Symposium (October 1987, Honolulu, HI)

    Google Scholar 

  20. S. Weinreb et al., FET’s and HEMT’s at cryogenic temperature, their properties and use in low-noise amplifiers. IEEE Trans. Microw Theory Tech 36(3), 552–560 (1988)

    Article  ADS  Google Scholar 

  21. http://www.miteq.com/products/amplifiers/cryogenic-amplifiers.php

  22. R.J. Pasquinelli, Noise performance of the Debuncher stochastic cooling systems. Antiproton Source Note 661, March 2001, internal document

    Google Scholar 

  23. Y. Hoshiko, K1 superconducting communication transmission. in Proceedings Fifth International Cryogenics Engineering Conference (ICEC5, Tokyo, 1975), p. 282

    Google Scholar 

  24. R.J. Pasquinelli, Superconducting delay line for stochastic cooling filters, in Proceedings of 1983 PAC IEEE Conference (Santa Fe, NM), pp. 3360–3362

    Google Scholar 

  25. R.J. Pasquinelli, Superconducting notch filters for the Fermilab antiproton source. in Proceedings of 12th International Conference on High Energy Accelerators (Fermilab, Batavia, IL, August 1983), pp. 584–586

    Google Scholar 

  26. R.J. Pasquinelli, Bulk acoustic wave (BAW) devices for stochastic cooling notch filters. in IEEE Nuclear Science (May 1991)

    Google Scholar 

  27. R.J. Pasquinelli, Fiber optic links for instrumentation. in Conference Proceedings of the Accelerator Instrumentation Workshop (October 1990)

    Google Scholar 

  28. R.J. Pasquinelli, Optical notch filters for Fermilab Debuncher Betatron stochastic cooling. in Proceedings of 1989 PAC IEEE Conference (Chicago, IL), pp. 694–696

    Google Scholar 

  29. T. Kakuta, S. Tanaka, LCP coated optical fiber with zero thermal coefficient of transmission delay time. in Proceedings of 36th International Wire and Cable Symposium, vol 1 (Sumitomo Electric Industries, Ltd., Yokohama, Japan, 1987), pp. 234–240

    Google Scholar 

  30. R.J. Pasquinelli, Electro-optical technology applied to accelerator beam measurement and control. in Proceedings of 1993 PAC IEEE Conference (Washington, DC), pp. 2081–2085

    Google Scholar 

  31. D. McGinnis, J. Marriner, Design of 4–8 GHz stochastic cooling equalizers for Fermilab Accumulator. in Proceedings of 1991 PAC IEEE Conference (San Francisco, CA), pp. 1392–1394

    Google Scholar 

  32. S. Weinreb et al., NRAO, waveguide system for a very large antenna array. Microwave J 20(3), 49–52 (1977)

    ADS  Google Scholar 

  33. R.J. Pasquinelli, Wide band free space transmission link utilizing a modulated infrared laser, TUA12. in Proceedings of 1999 PAC IEEE Conference (New York, NY), pp. 1094–1096

    Google Scholar 

  34. A.S. Gilmour Jr., Microwave Tubes (Artech House, Norwood, MA, 1986)

    Google Scholar 

  35. V. Lebedev, Improvements to the stacktail and Debuncher momentum cooling systems. in Proceedings of COOL 09 (Lanzhou, China, 2009), MOA1MCCO02

    Google Scholar 

  36. R.J. Pasquinelli, Debuncher momentum cooling systems signal to noise measurements. Pbar note 667, Internal Antiproton Source Document (December 2001)

    Google Scholar 

  37. D. Sun et al., New equalizers for antiproton stochastic cooling at Fermilab. in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), THAP16

    Google Scholar 

  38. V. Lebedev et al., in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), p. 202

    Google Scholar 

  39. V. Lebedev, in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), p. 39

    Google Scholar 

  40. R. Pasquinelli et al., in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), p. 198

    Google Scholar 

  41. Tevatron Design Report, FERMILAB-DESIGN-1984-01 (1984)

    Google Scholar 

  42. I. Nesmiyan, F. Nolden, in Proceedings of EPAC-2004 (Lucern, Switzerland), p. 2170

    Google Scholar 

  43. V. Lebedev et al., in Proceedings of COOL-2009 (Lanzhou, China, 2009), p. 27

    Google Scholar 

  44. G.I. Budker, Sov. Atomic Energy 22, 346 (1967)

    Google Scholar 

  45. G.I. Budker et al., IEEE Trans. Nucl. Sci. NS-22, 2093 (1975)

    Article  ADS  Google Scholar 

  46. I.N. Meshkov, Phys. Part. Nucl. 25(6), 631 (1994)

    Google Scholar 

  47. Fermilab Recycler Ring Technical Design Report, FERMILAB-TM-1991, 1996

    Google Scholar 

  48. S. Nagaitsev et al., Phys. Rev. Lett. 96, 044801 (2006)

    Article  ADS  Google Scholar 

  49. Y.S. Derbenev, A.N. Skrinsky, Particle Accelerators 8, 1 (1977)

    Google Scholar 

  50. I.N. Meshkov et al., Physics guide of BETACOOL code, v.1.1, BNL note C-A/AP#262, p. 17

    Google Scholar 

  51. A. Shemyakin, L.R. Prost, in Proceedings of APAC’07 (Indore, India, January 29–February 2, 2007), TUPMA094, pp. 238–240; also in A. Shemyakin, FERMILAB-TM-2374-AD (2007)

    Google Scholar 

  52. J.R. Adney et al., in Proceedings of 1989 I.E. PAC (20–23 March 1989, Chicago, IL), p. 348

    Google Scholar 

  53. M.E. Veis et al., in Proceedings of EPAC’88 (Rome, 7–11 June 1988), p. 1361

    Google Scholar 

  54. G.P. Jackson, Modified Betatron approach to electron cooling. in Proceedings of MEEC’97 (Novosibirsk, February 26–28, 1997)

    Google Scholar 

  55. I. Ben-Zvi, in Proceedings of EPAC’06 (Edinburgh, UK, June 26–30, 2006), TUZBPA01

    Google Scholar 

  56. J. Dietrich et al., in Proceedings of COOL’11 (September 12–16, 2011, Alushta, Ukraine), MOIO05

    Google Scholar 

  57. D.R. Anderson et al., in Proceedings of EPAC’92 (Berlin, 1992), pp. 836–838

    Google Scholar 

  58. N. Dikansky et al., Electron beam focusing system. in FERMILAB-TM-1998 (1996)

    Google Scholar 

  59. A. Burov, S. Nagaitsev, A. Shemyakin, Y. Derbenev, Optical principles of beam transport for relativistic electron cooling. Phys. Rev. 3, 094002 (2000)

    Google Scholar 

  60. Pelletrons are manufactured by the National Electrostatics Corporation, www.pelletron.com

  61. J.A. MacLachlan, A. Burov, A.C. Crawford, T. Kroc, S. Nagaitsev, C. Schmidt, A. Sharapa, A. Shemyakin, A. Warner, Prospectus for an electron cooling system for the Recycler. in FERMILAB-TM-2061 (1998)

    Google Scholar 

  62. OptiM - V. Lebedev, A. Bogacz, Betatron motion with coupling. in JLAB-ACC-99-19 (1999)

    Google Scholar 

  63. A. Burov, T. Kroc, V. Lebedev, S. Nagaitsev, A. Shemyakin, A. Warner, S. Seletskiy, Optics of the Fermilab electron cooler. in Proceedings of APAC’04 (Gyeongju, Korea, March 22–26, 2004), pp. 647–649

    Google Scholar 

  64. B. Chase, private communication

    Google Scholar 

  65. The program for data recording was written by V. Lebedev and V. Nagaslaev

    Google Scholar 

  66. A.V. Ivanov, M.A. Tiunov, ULTRASAM—2D code for simulation of electron guns with ultra high precision. in Proceedings of European, PAC’02 (Paris, 2002), p. 1634

    Google Scholar 

  67. M.A. Tiunov, BEAM − 2D-code package for simulation of high perveance beam dynamics in long systems. in Proceedings of International Symposium “SPACE CHARGE EFFECTS IN FORMATION OF INTENSE LOW ENERGY BEAMS”. (JINR, Dubna, Russia, February 15–17, 1999)

    Google Scholar 

  68. A. Warner, A. Burov, K. Carlson, G. Kazakevich, S. Nagaitsev, L. Prost, M. Sutherland, M. Tiunov, in AIP Conference Proceedings, vol 821 (2006), pp. 380–385

    Google Scholar 

  69. T.K. Kroc, A.V. Burov, T.B. Bolshakov, A. Shemyakin, in Proceedings of 2005 I.E. PAC (Knoxville, USA, May 16–20, 2005), p. 3801

    Google Scholar 

  70. A. Burov, G. Kazakevich, T. Kroc, V. Lebedev, S. Nagaitsev, L. Prost, S. Pruss, A. Shemyakin, M. Sutherland, M. Tiunov, A. Warner, in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 139

    Google Scholar 

  71. A.Shemyakin, in Proceedings of European PAC (Vienna, Austria, 26–30 June 2000), pp. 1268–1270

    Google Scholar 

  72. L.R. Prost, A. Shemyakin, in Proceedings of 2005 I.E. PAC (Knoxville, USA, May 16–20, 2005), p. 2387

    Google Scholar 

  73. A. Burov, I. Gusachenko, S. Nagaitsev, A. Shemyakin, in FERMILAB-CONF-05-462-AD (2005)

    Google Scholar 

  74. A. Shemyakin, A. Burov, K. Carlson, V. Dudnikov, B. Kramper, T. Kroc, J. Leibfritz, M. McGee, S. Nagaitsev, G. Saewert, C.W. Schmidt, A. Warner, S. Seletsky, V. Tupikov, in Proceedings of COOL’03 (Lake Yamanaka, Japan, May 19–23, 2003)

    Google Scholar 

  75. L. Prost, A. Shemyakin, in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 391

    Google Scholar 

  76. A. Warner, L. Carmichael, K. Carlson, J. Crisp, R. Goodwin, L. Prost, G. Saewert, A. Shemyakin, in Proceedings of DIPAC-09 European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators (Bazel, Switzerland, 2009), p. 222

    Google Scholar 

  77. A. Shemyakin, A. Burov, K. Carlson, L.R. Prost, M. Sutherland, A. Warner, in Proceedings of 2009 I.E. PAC (Vancouver, Canada, May 4–8, 2009), TU6PFP076

    Google Scholar 

  78. A. Burov, private communication (2007), available at http://beamdocs.fnal.gov/AD-public/DocDB/ShowDocument?docid=2966

  79. A. Shemyakin, L. Prost, G. Saewert, in Proceedings of 2010 Int’l PAC (Kyoto, Japan, May 23–28, 2010), MOPD075

    Google Scholar 

  80. The measurements were made by P. Joireman, and the analysis was performed by A. Burov

    Google Scholar 

  81. A. Burov, private communication (2007), available at http://beamdocs.fnal.gov/AD-public/DocDB/ShowDocument?docid=3099

  82. G. Kazakevich, A. Burov, C. Boffo, P. Joireman, G. Saewert, C.W. Schmidt, A. Shemyakin, in FERMILAB-TM-2319-AD (2005)

    Google Scholar 

  83. A.C. Crawford, S. Nagaitsev, A. Shemyakin, S. Seletsky, V. Tupikov, Fermilab preprint TM-2224 (2003)

    Google Scholar 

  84. V. Tupikov, G. Kazakevich, T.K. Kroc, S. Nagaitsev, L. Prost, A. Shemyakin, C.W. Shmidt, M. Sutherland, A. Warner, in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 375

    Google Scholar 

  85. A. Shemyakin, K. Carlson, L.R. Prost, G. Saewert, Fermilab preprint CONF-08-425-AD (2008)

    Google Scholar 

  86. S.M. Seletskiy, A. Shemyakin, in Proceedings of 2005 I.E. PAC (Knoxville, USA, May 16–20, 2005), p. 3638

    Google Scholar 

  87. S. Nagaitsev et al., in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 39

    Google Scholar 

  88. A. Khilkevich, L.R. Prost, A.V. Shemyakin, in Proceedings of 2011 I.E. PAC (New York, USA, March 28–April 1, 2011), WEP228

    Google Scholar 

  89. S. Nagaitsev, C. Gattuso, S. Pruss, J. Volk, Experience with magnetic shielding of a large scale accelerator. in Proceedings of IEEE 2001 Particle Accelerator Conference (Chicago, IL, USA, June 18–22, 2001), RPPH062

    Google Scholar 

  90. P. Lebrun, Recycler orbit length stabilization via the 5-bump at location 518–526. (unpublished)

    Google Scholar 

  91. J.D. Bjorken, S. Mtingwa, Intrabeam scattering. Particle Accelerators 13, 115–143 (1983)

    Google Scholar 

  92. K. Gounder et al., Recycler ring beam life time. in Proceedings of 2001 Particle Accelerator Conference (Chicago, IL, USA, June 18–22, 2001), RPPH055

    Google Scholar 

  93. S. Mishra, Status of the Fermilab Recycler ring. in Proceedings of European Particle Accelerator Conference (Paris, France, June 3–7, 2002), MOPLE035

    Google Scholar 

  94. L. Hermansson, D. Reistad, Experiences of operating CELCIUS with hydrogen pellet target. Nucl. Inst. Meth. Phys. Res. A 441, 140 (2000)

    Article  ADS  Google Scholar 

  95. M. Hu, D. Broemmelsiek, A. Burov, J. Marriner, S. Nagaitsev, K.Y. Ng, Beam-based measurement at the Fermilab Recycler ring. in FERMILAB-FN-0758-AD (2004)

    Google Scholar 

  96. A. Burov, Electron drift instability in storage rings with electron cooling. Nucl. Inst. Meth. Phys. Res. A 441, 23 (2000)

    Article  ADS  Google Scholar 

  97. V.V. Parkhomchuk, New insights in the theory of electron cooling. Nucl. Inst. Meth. Phys. Res. A 441, 9 (2000)

    Article  ADS  Google Scholar 

  98. A. Sharapa, A. Shemyakin, S. Nagaitsev, Nucl. Instr. Meth. A 417, 177 (1998)

    Google Scholar 

  99. L.R. Prost, A. Burov, K. Carlson, A. Shemyakin, M. Sutherland, A.Warner, in Proceedings of COOL’07 (Bad Kreuznach, Germany, September 10–14, 2007), MOA2I04

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lebedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lebedev, V., Pasquinelli, R., Prost, L., Shemyakin, A. (2014). Antiproton Production and Cooling. In: Lebedev, V., Shiltsev, V. (eds) Accelerator Physics at the Tevatron Collider. Particle Acceleration and Detection. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0885-1_7

Download citation

Publish with us

Policies and ethics