Antiproton Production and Cooling

  • V. LebedevEmail author
  • R. Pasquinelli
  • L. Prost
  • A. Shemyakin
Part of the Particle Acceleration and Detection book series (PARTICLE)


The progress in the antiproton production and cooling has been absolutely essential for the success of the Collider Run II. Improvements of the Tevatron optics and operation resulted in a gradual increase in the fraction of antiprotons lost in the proton–antiproton collisions in the interaction points. However, by the middle of 2004, it achieved its maximum of about 30–40 % (see Fig. 7.1) determined mainly by the intra-beam scattering (IBS) and the beam–beam effects (see Chap.  8). Since that time, it stayed basically unchanged through the end of the Run II. Further progress in the luminosity could not be achieved without an increase in the antiproton production. Figure 7.2 presents the weekly antiproton production in the course of Run II. One can see that starting from the beginning of 2005, the rate of antiproton production grew significantly reflecting an increased priority for antiproton production.


  1. 1.
    B. Bayanov et al., Liquid lithium lens with high magnetic fields. in Proceedings of the 1999 I.E. PAC (New York, 1999), pp. 3086–3088Google Scholar
  2. 2.
    N.V. Mokhov, The MARS Code System User Guide, Version 13(95), Fermilab-FN-628 (1995); N.V. Mokhov et al., Fermilab-Conf-98/379 (1998); LANL Report LA-UR-98-5716 (1998); nucl-th/9812038 v2 16 Dec 1998;
  3. 3.
    B.F. Bayanov et al., A lithium lens for axially symmetric focusing of high energy particles beams. NIM 190, 9–14 (1981)ADSGoogle Scholar
  4. 4.
    T.A. Vsevolozskaya, The optimization and efficiency of antiproton production within a fixed acceptance. NIM 190, 479–486 (1981)ADSGoogle Scholar
  5. 5.
    G. Dugan, P-bar Production and collection at the FNAL antiproton source. in Proceedings of the 13th International Conference of High Energy Accelerators, vol 2 (Novosibirsk, 1986), pp. 264–271Google Scholar
  6. 6.
    V. Nagaslaev, K. Gollwitzer, V. Lebedev, A. Valishev (Fermilab), V. Sajaev (Argonne). Measurement and optimization of the lattice functions in the Debuncher ring at Fermilab. in FERMILAB-CONF-06-200-AD (2006)Google Scholar
  7. 7.
    V.P. Nagaslaev, V.A. Lebedev, S.J. Werkema (Fermilab), Lattice optimization for the stochastic cooling in the Accumulator ring at Fermilab. in FERMILAB-CONF-07-712-AD (2007)Google Scholar
  8. 8.
    S. van der Meer, Rev. Mod. Phys. 57, 689 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    D. Möhl, Stochastic cooling, in CERN Accelerator School, Fifth Advanced Accelerator Physics Course, ed. by S. Turner (CERN, Geneva, 1995), pp. 587–671Google Scholar
  10. 10.
    J. Bisognano, C. Leemann, Stochastic cooling, in Summer School on High Energy Particle Accelerators, AIP Conference Proceedings 87, ed. by R.A. Carrigan et al. (American Institute of Physics, Melville, NY, 1982), pp. 584–655Google Scholar
  11. 11.
    V.V. Parkhomchuk, D.V. Pestrikov, Sov. Phys. Tech. Phys. 25(7), 818 (1980)Google Scholar
  12. 12.
    A. Jansson et al., in Proceedings of 2004 European PAC (Lucerne, Switzerland), pp. 2777–2779Google Scholar
  13. 13.
    F. Voelker et al., in Proceedings of 1983 PAC IEEE Conference (Santa Fe, NM), pp. 2262–2263
  14. 14.
    G. Lambertson et al., in Proceedings of 1985 PAC IEEE Conference (Vancouver, BC, Canada), pp. 2168–2170Google Scholar
  15. 15.
    D. McGinnis, Theory and design of microwave planar electrodes for stochastic cooling of particle neams. Microw. Opt. Tech. Lett. 4(11), 439–443 (1991)CrossRefGoogle Scholar
  16. 16.
    B. Autin et al., in Proceedings of 1987 PAC IEEE Conference (Washington, DC), pp. 1549–1551Google Scholar
  17. 17.
    D. McGinnis, Slotted waveguide slow-wave stochastic cooling arrays. in Proceedings of 1999 PAC IEEE Conference (New York), pp. 1713–1715Google Scholar
  18. 18.
    D. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005), pp. 489–493Google Scholar
  19. 19.
    B. Leskovar, Low-noise cryogenically cooled broad-band microwave preamplifiers. in 172nd Meeting of the Low Temperature Electronics Symposium (October 1987, Honolulu, HI)Google Scholar
  20. 20.
    S. Weinreb et al., FET’s and HEMT’s at cryogenic temperature, their properties and use in low-noise amplifiers. IEEE Trans. Microw Theory Tech 36(3), 552–560 (1988)ADSCrossRefGoogle Scholar
  21. 21.
  22. 22.
    R.J. Pasquinelli, Noise performance of the Debuncher stochastic cooling systems. Antiproton Source Note 661, March 2001, internal documentGoogle Scholar
  23. 23.
    Y. Hoshiko, K1 superconducting communication transmission. in Proceedings Fifth International Cryogenics Engineering Conference (ICEC5, Tokyo, 1975), p. 282Google Scholar
  24. 24.
    R.J. Pasquinelli, Superconducting delay line for stochastic cooling filters, in Proceedings of 1983 PAC IEEE Conference (Santa Fe, NM), pp. 3360–3362Google Scholar
  25. 25.
    R.J. Pasquinelli, Superconducting notch filters for the Fermilab antiproton source. in Proceedings of 12th International Conference on High Energy Accelerators (Fermilab, Batavia, IL, August 1983), pp. 584–586Google Scholar
  26. 26.
    R.J. Pasquinelli, Bulk acoustic wave (BAW) devices for stochastic cooling notch filters. in IEEE Nuclear Science (May 1991)Google Scholar
  27. 27.
    R.J. Pasquinelli, Fiber optic links for instrumentation. in Conference Proceedings of the Accelerator Instrumentation Workshop (October 1990)Google Scholar
  28. 28.
    R.J. Pasquinelli, Optical notch filters for Fermilab Debuncher Betatron stochastic cooling. in Proceedings of 1989 PAC IEEE Conference (Chicago, IL), pp. 694–696Google Scholar
  29. 29.
    T. Kakuta, S. Tanaka, LCP coated optical fiber with zero thermal coefficient of transmission delay time. in Proceedings of 36th International Wire and Cable Symposium, vol 1 (Sumitomo Electric Industries, Ltd., Yokohama, Japan, 1987), pp. 234–240Google Scholar
  30. 30.
    R.J. Pasquinelli, Electro-optical technology applied to accelerator beam measurement and control. in Proceedings of 1993 PAC IEEE Conference (Washington, DC), pp. 2081–2085Google Scholar
  31. 31.
    D. McGinnis, J. Marriner, Design of 4–8 GHz stochastic cooling equalizers for Fermilab Accumulator. in Proceedings of 1991 PAC IEEE Conference (San Francisco, CA), pp. 1392–1394Google Scholar
  32. 32.
    S. Weinreb et al., NRAO, waveguide system for a very large antenna array. Microwave J 20(3), 49–52 (1977)ADSGoogle Scholar
  33. 33.
    R.J. Pasquinelli, Wide band free space transmission link utilizing a modulated infrared laser, TUA12. in Proceedings of 1999 PAC IEEE Conference (New York, NY), pp. 1094–1096Google Scholar
  34. 34.
    A.S. Gilmour Jr., Microwave Tubes (Artech House, Norwood, MA, 1986)Google Scholar
  35. 35.
    V. Lebedev, Improvements to the stacktail and Debuncher momentum cooling systems. in Proceedings of COOL 09 (Lanzhou, China, 2009), MOA1MCCO02Google Scholar
  36. 36.
    R.J. Pasquinelli, Debuncher momentum cooling systems signal to noise measurements. Pbar note 667, Internal Antiproton Source Document (December 2001)Google Scholar
  37. 37.
    D. Sun et al., New equalizers for antiproton stochastic cooling at Fermilab. in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), THAP16Google Scholar
  38. 38.
    V. Lebedev et al., in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), p. 202Google Scholar
  39. 39.
    V. Lebedev, in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), p. 39Google Scholar
  40. 40.
    R. Pasquinelli et al., in Proceedings of COOL-2007 (Bad Kreuznach, Germany, 2007), p. 198Google Scholar
  41. 41.
    Tevatron Design Report, FERMILAB-DESIGN-1984-01 (1984)Google Scholar
  42. 42.
    I. Nesmiyan, F. Nolden, in Proceedings of EPAC-2004 (Lucern, Switzerland), p. 2170Google Scholar
  43. 43.
    V. Lebedev et al., in Proceedings of COOL-2009 (Lanzhou, China, 2009), p. 27Google Scholar
  44. 44.
    G.I. Budker, Sov. Atomic Energy 22, 346 (1967)Google Scholar
  45. 45.
    G.I. Budker et al., IEEE Trans. Nucl. Sci. NS-22, 2093 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    I.N. Meshkov, Phys. Part. Nucl. 25(6), 631 (1994)Google Scholar
  47. 47.
    Fermilab Recycler Ring Technical Design Report, FERMILAB-TM-1991, 1996Google Scholar
  48. 48.
    S. Nagaitsev et al., Phys. Rev. Lett. 96, 044801 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    Y.S. Derbenev, A.N. Skrinsky, Particle Accelerators 8, 1 (1977)Google Scholar
  50. 50.
    I.N. Meshkov et al., Physics guide of BETACOOL code, v.1.1, BNL note C-A/AP#262, p. 17Google Scholar
  51. 51.
    A. Shemyakin, L.R. Prost, in Proceedings of APAC’07 (Indore, India, January 29–February 2, 2007), TUPMA094, pp. 238–240; also in A. Shemyakin, FERMILAB-TM-2374-AD (2007)Google Scholar
  52. 52.
    J.R. Adney et al., in Proceedings of 1989 I.E. PAC (20–23 March 1989, Chicago, IL), p. 348Google Scholar
  53. 53.
    M.E. Veis et al., in Proceedings of EPAC’88 (Rome, 7–11 June 1988), p. 1361Google Scholar
  54. 54.
    G.P. Jackson, Modified Betatron approach to electron cooling. in Proceedings of MEEC’97 (Novosibirsk, February 26–28, 1997)Google Scholar
  55. 55.
    I. Ben-Zvi, in Proceedings of EPAC’06 (Edinburgh, UK, June 26–30, 2006), TUZBPA01Google Scholar
  56. 56.
    J. Dietrich et al., in Proceedings of COOL’11 (September 12–16, 2011, Alushta, Ukraine), MOIO05Google Scholar
  57. 57.
    D.R. Anderson et al., in Proceedings of EPAC’92 (Berlin, 1992), pp. 836–838Google Scholar
  58. 58.
    N. Dikansky et al., Electron beam focusing system. in FERMILAB-TM-1998 (1996)Google Scholar
  59. 59.
    A. Burov, S. Nagaitsev, A. Shemyakin, Y. Derbenev, Optical principles of beam transport for relativistic electron cooling. Phys. Rev. 3, 094002 (2000)Google Scholar
  60. 60.
    Pelletrons are manufactured by the National Electrostatics Corporation,
  61. 61.
    J.A. MacLachlan, A. Burov, A.C. Crawford, T. Kroc, S. Nagaitsev, C. Schmidt, A. Sharapa, A. Shemyakin, A. Warner, Prospectus for an electron cooling system for the Recycler. in FERMILAB-TM-2061 (1998)Google Scholar
  62. 62.
    OptiM - V. Lebedev, A. Bogacz, Betatron motion with coupling. in JLAB-ACC-99-19 (1999)Google Scholar
  63. 63.
    A. Burov, T. Kroc, V. Lebedev, S. Nagaitsev, A. Shemyakin, A. Warner, S. Seletskiy, Optics of the Fermilab electron cooler. in Proceedings of APAC’04 (Gyeongju, Korea, March 22–26, 2004), pp. 647–649Google Scholar
  64. 64.
    B. Chase, private communicationGoogle Scholar
  65. 65.
    The program for data recording was written by V. Lebedev and V. NagaslaevGoogle Scholar
  66. 66.
    A.V. Ivanov, M.A. Tiunov, ULTRASAM—2D code for simulation of electron guns with ultra high precision. in Proceedings of European, PAC’02 (Paris, 2002), p. 1634Google Scholar
  67. 67.
    M.A. Tiunov, BEAM − 2D-code package for simulation of high perveance beam dynamics in long systems. in Proceedings of International Symposium “SPACE CHARGE EFFECTS IN FORMATION OF INTENSE LOW ENERGY BEAMS”. (JINR, Dubna, Russia, February 15–17, 1999)Google Scholar
  68. 68.
    A. Warner, A. Burov, K. Carlson, G. Kazakevich, S. Nagaitsev, L. Prost, M. Sutherland, M. Tiunov, in AIP Conference Proceedings, vol 821 (2006), pp. 380–385Google Scholar
  69. 69.
    T.K. Kroc, A.V. Burov, T.B. Bolshakov, A. Shemyakin, in Proceedings of 2005 I.E. PAC (Knoxville, USA, May 16–20, 2005), p. 3801Google Scholar
  70. 70.
    A. Burov, G. Kazakevich, T. Kroc, V. Lebedev, S. Nagaitsev, L. Prost, S. Pruss, A. Shemyakin, M. Sutherland, M. Tiunov, A. Warner, in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 139Google Scholar
  71. 71.
    A.Shemyakin, in Proceedings of European PAC (Vienna, Austria, 26–30 June 2000), pp. 1268–1270Google Scholar
  72. 72.
    L.R. Prost, A. Shemyakin, in Proceedings of 2005 I.E. PAC (Knoxville, USA, May 16–20, 2005), p. 2387Google Scholar
  73. 73.
    A. Burov, I. Gusachenko, S. Nagaitsev, A. Shemyakin, in FERMILAB-CONF-05-462-AD (2005)Google Scholar
  74. 74.
    A. Shemyakin, A. Burov, K. Carlson, V. Dudnikov, B. Kramper, T. Kroc, J. Leibfritz, M. McGee, S. Nagaitsev, G. Saewert, C.W. Schmidt, A. Warner, S. Seletsky, V. Tupikov, in Proceedings of COOL’03 (Lake Yamanaka, Japan, May 19–23, 2003)Google Scholar
  75. 75.
    L. Prost, A. Shemyakin, in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 391Google Scholar
  76. 76.
    A. Warner, L. Carmichael, K. Carlson, J. Crisp, R. Goodwin, L. Prost, G. Saewert, A. Shemyakin, in Proceedings of DIPAC-09 European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators (Bazel, Switzerland, 2009), p. 222Google Scholar
  77. 77.
    A. Shemyakin, A. Burov, K. Carlson, L.R. Prost, M. Sutherland, A. Warner, in Proceedings of 2009 I.E. PAC (Vancouver, Canada, May 4–8, 2009), TU6PFP076Google Scholar
  78. 78.
    A. Burov, private communication (2007), available at
  79. 79.
    A. Shemyakin, L. Prost, G. Saewert, in Proceedings of 2010 Int’l PAC (Kyoto, Japan, May 23–28, 2010), MOPD075Google Scholar
  80. 80.
    The measurements were made by P. Joireman, and the analysis was performed by A. BurovGoogle Scholar
  81. 81.
    A. Burov, private communication (2007), available at
  82. 82.
    G. Kazakevich, A. Burov, C. Boffo, P. Joireman, G. Saewert, C.W. Schmidt, A. Shemyakin, in FERMILAB-TM-2319-AD (2005)Google Scholar
  83. 83.
    A.C. Crawford, S. Nagaitsev, A. Shemyakin, S. Seletsky, V. Tupikov, Fermilab preprint TM-2224 (2003)Google Scholar
  84. 84.
    V. Tupikov, G. Kazakevich, T.K. Kroc, S. Nagaitsev, L. Prost, A. Shemyakin, C.W. Shmidt, M. Sutherland, A. Warner, in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 375Google Scholar
  85. 85.
    A. Shemyakin, K. Carlson, L.R. Prost, G. Saewert, Fermilab preprint CONF-08-425-AD (2008)Google Scholar
  86. 86.
    S.M. Seletskiy, A. Shemyakin, in Proceedings of 2005 I.E. PAC (Knoxville, USA, May 16–20, 2005), p. 3638Google Scholar
  87. 87.
    S. Nagaitsev et al., in Proceedings of COOL’05 (Galena, USA, September 19–23, 2005), p. 39Google Scholar
  88. 88.
    A. Khilkevich, L.R. Prost, A.V. Shemyakin, in Proceedings of 2011 I.E. PAC (New York, USA, March 28–April 1, 2011), WEP228Google Scholar
  89. 89.
    S. Nagaitsev, C. Gattuso, S. Pruss, J. Volk, Experience with magnetic shielding of a large scale accelerator. in Proceedings of IEEE 2001 Particle Accelerator Conference (Chicago, IL, USA, June 18–22, 2001), RPPH062Google Scholar
  90. 90.
    P. Lebrun, Recycler orbit length stabilization via the 5-bump at location 518–526. (unpublished)Google Scholar
  91. 91.
    J.D. Bjorken, S. Mtingwa, Intrabeam scattering. Particle Accelerators 13, 115–143 (1983)Google Scholar
  92. 92.
    K. Gounder et al., Recycler ring beam life time. in Proceedings of 2001 Particle Accelerator Conference (Chicago, IL, USA, June 18–22, 2001), RPPH055Google Scholar
  93. 93.
    S. Mishra, Status of the Fermilab Recycler ring. in Proceedings of European Particle Accelerator Conference (Paris, France, June 3–7, 2002), MOPLE035Google Scholar
  94. 94.
    L. Hermansson, D. Reistad, Experiences of operating CELCIUS with hydrogen pellet target. Nucl. Inst. Meth. Phys. Res. A 441, 140 (2000)ADSCrossRefGoogle Scholar
  95. 95.
    M. Hu, D. Broemmelsiek, A. Burov, J. Marriner, S. Nagaitsev, K.Y. Ng, Beam-based measurement at the Fermilab Recycler ring. in FERMILAB-FN-0758-AD (2004)Google Scholar
  96. 96.
    A. Burov, Electron drift instability in storage rings with electron cooling. Nucl. Inst. Meth. Phys. Res. A 441, 23 (2000)ADSCrossRefGoogle Scholar
  97. 97.
    V.V. Parkhomchuk, New insights in the theory of electron cooling. Nucl. Inst. Meth. Phys. Res. A 441, 9 (2000)ADSCrossRefGoogle Scholar
  98. 98.
    A. Sharapa, A. Shemyakin, S. Nagaitsev, Nucl. Instr. Meth. A 417, 177 (1998)Google Scholar
  99. 99.
    L.R. Prost, A. Burov, K. Carlson, A. Shemyakin, M. Sutherland, A.Warner, in Proceedings of COOL’07 (Bad Kreuznach, Germany, September 10–14, 2007), MOA2I04Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. Lebedev
    • 1
    Email author
  • R. Pasquinelli
    • 1
  • L. Prost
    • 1
  • A. Shemyakin
    • 1
  1. 1.Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations