Skip to main content

Emittance Growth and Beam Loss

  • Chapter
  • First Online:

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

Abstract

A wide range of diffusion and beam loss mechanisms were studied during the Tevatron Run II commissioning and operations. Many of them were well known [Coulomb scattering, residual gas and intrabeam scattering (IBS)] but required substantial studies and deeper theoretical insights because of unique experimental conditions and beam parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This case describes well the beam lifetime in an electron synchrotron when the horizontal beam emittance is set by equilibrium between synchrotron radiation (SR) damping and diffusion due to SR. The vertical emittance is much smaller and therefore the beam loss due to diffusion in vertical plane is negligible. It makes the problem being single dimensional.

  2. 2.

    Actually this condition is satisfied for all circular accelerators build to this time with exception of LEP presenting a weakly relativistic case.

  3. 3.

    Note that at this point we consider only variations of f related to the scattering. Effects of betatron motion will be accounted at the next stage of calculations.

  4. 4.

    Method of the integration can be found below in the computation of similar integral for intra-beam scattering [see details further down Eq. (6.80)]. Note also that the Kernel (6.66) can be used without δ-function [like in Eq. (6.65)] in alternative form of integro-differential equation: \( \partial f/\partial t-\lambda \partial (If)/\partial I={\displaystyle {\int}_0^{I_b}W\left(I,{I}^{\prime}\right)\left(f\left({I}^{\prime },t\right)-f\left(I,t\right)\right)d{I}^{\prime }} \).

  5. 5.

    For rectangular distribution with total bunch length ϕ tot (n(ϕ) = 1/ϕ tot within bunch) and linear RF one obtains \( {\displaystyle \operatorname{}{\widehat{p}}^2n\left(\phi \right) d\psi}=2\pi \omega I/{\phi}_{\mathrm{tot}} \), and, consequently, \( {D}_{\left|\right|}(I)=\tilde{A}{L}_{\mathrm{c}}/{\phi}_{\mathrm{tot}} \).

  6. 6.

    Here we choose alternative form of Eq. (6.61).

  7. 7.

    It implies that the emittance growth rate is sufficiently small which is true in hadron colliders and storage rings.

  8. 8.

    Note that by definition the spectral density used in measurements is 4π larger than the spectral density used in Sect. 6.2.3.

References

  1. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, vol. 10 (Pergamon Press, New York, 1981)

    Google Scholar 

  2. A. Piwinski, in Proceedings of the 9th International Conference on High Energy Accelerators, SLAC, Stanford, CA, USA, 1974, p. 405

    Google Scholar 

  3. J.D. Bjorken, S.K. Mtingwa, Part. Accel. 13, 115 (1983)

    Google Scholar 

  4. L.D. Landau, Phys. Z. Sowjetunion 10, 154 (1936)

    MATH  Google Scholar 

  5. M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Phys. Rev. 107, 1 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. S. Nagaitsev, Phys. Rev. ST Accel. Beams 8, 064403 (2005)

    Article  ADS  Google Scholar 

  8. S. Ichimaru, M.N. Rosenbluth, Phys. Fluids 13, 2778 (1970)

    Article  ADS  MATH  Google Scholar 

  9. V. Lebedev et al., NIM A 391, 176 (1997)

    Article  ADS  Google Scholar 

  10. V. Parkhomchuk, Physics of fast electron cooling, in Proceedings of the Workshop on Electron Cooling and Related Applications, Karlsruhe, 1984

    Google Scholar 

  11. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  12. C. Bernardini et al., Phys. Rev. Lett. 10, 407 (1963)

    Article  ADS  Google Scholar 

  13. J. Haissinski, LAL Orsay report 41-63 (1963)

    Google Scholar 

  14. V. Levedev, in Proceedings HB-2004 Bensheim, AIP Conference Proceedings, vol. 773, New York, 2005, p. 440

    Google Scholar 

  15. G. Dome, Diffusion due to RF Noise, in Proceedings of the CERN Accelerator School Advanced Accelerator Physics Course, Oxford, 1985, Preprint CERN 87-03 (April 1987), pp. 370–401

    Google Scholar 

  16. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980)

    Google Scholar 

  17. H. Hancock, Theory of Elliptic Functions (Dover Publications, New York, 1958)

    MATH  Google Scholar 

  18. V. Lebedev, L. Nicolas, A. Tollestrup, beams-doc-1155 (2004)

    Google Scholar 

  19. V. Shiltsev et al., Phys. Rev. ST Accel. Beams 8, 101001 (2005)

    Article  ADS  Google Scholar 

  20. V. Shiltsev, A. Tollestrup, Emittance growth mechanisms in the Tevatron beams. JINST 6, P08001 (2011)

    ADS  Google Scholar 

  21. N.V. Mokhov, Beam Collimation at Hadron Colliders, in AIP Conference Proceedings, vol. 693, 2003, pp. 14–19

    Google Scholar 

  22. M.D. Church, A.I. Drozhdin, A. Legan, N.V. Mokhov, R.E. Reilly, Tevatron Run-II Beam Collimation System, in Proceedings of the 1999 IEEE Particle Accelerator Conference (IEEE Conference Proceedings, New York, 1999), pp. 56–58; Fermilab-Conf-99/059

    Google Scholar 

  23. I. Baishev, A. Drozhdin, N. Mokhov, STRUCT Program User’s Reference Manual, SSCL-MAN-0034 (1994)

    Google Scholar 

  24. N.V. Mokhov, The MARS Code System User Guide, Version 13(95), Fermilab-FN-628 (1995); N.V. Mokhov et al., Fermilab-Conf-98/379 (1998); LANL Report LA-UR-98-5716 (1998); nucl-th/9812038 v2 16 Dec 1998; http://wwwap.fnal.gov/MARS/

  25. L.Y. Nicolas, N.V. Mokhov, Impact of the A48 Collimator on the Tevatron BØ Dipoles, FERMILAB-TM-2214, June 2003

    Google Scholar 

  26. K.-H. Mess, M. Seidel, Nucl. Instrum. Methods A 351, 279 (1994)

    Article  ADS  Google Scholar 

  27. N. Mokhov, J. Annala, R. Carrigan, M. Church, A. Drozhdin, T. Johnson, R. Reilly, V. Shiltsev, G. Stancari, D. Still, A. Valishev, X.-L. Zhang, V. Zvoda, Tevatron beam halo collimation system: design, operational experience and new methods. JINST 6, T08005 (2011)

    Google Scholar 

  28. J.M. Butler, D.S. Denisov, H.T. Diehl, A.I. Drozhdin, N.V. Mokhov, D.R. Wood, Reduction of TEVATRON and Main Ring induced backgrounds in the DØ detector. Fermilab FN-629 (1995)

    Google Scholar 

  29. A.I. Drozhdin, V.A. Lebedev, N.V. Mokhov et al., Beam Loss and Backgrounds in the CDF and D0 Detectors due to Nuclear Elastic Beam-Gas Scattering, in Proceedings of the 2003 IEEE Particle Accelerator Conference, Portland, 2003, pp. 1733–1735; Fermilab-FN-734

    Google Scholar 

  30. Tevatron Sequencer Software Help and Explanation. http://wwwbd.fnal.gov/webhelp_edit/pa1028/pa10281_1.html

  31. X.-L. Zhang et al., Phys. Rev. ST Accel. Beams 11, 051002 (2008)

    Article  ADS  Google Scholar 

  32. E. Tsyganov, Fermilab preprint FNAL-TM-682 (1976)

    Google Scholar 

  33. V.M. Biryukov, Y.A. Chesnokov, V.I. Kotov, Crystal Channeling and Its Application at High Energy Accelerators (Springer, Berlin, 1997)

    Book  Google Scholar 

  34. M. Maslov, N. Mokhov, L. Yazynin, Preprint SSCL-484 (1991)

    Google Scholar 

  35. R.A. Carrigan Jr. et al., Phys. Rev. ST Accel. Beams 1, 022801 (1998)

    Article  ADS  Google Scholar 

  36. R.A. Carrigan Jr. et al., Phys. Rev. ST Accel. Beams 5, 043501 (2002)

    Article  ADS  Google Scholar 

  37. R.A. Carrigan Jr. et al., Fermilab preprint FNAL-Conf-06-309 (2006)

    Google Scholar 

  38. N. Mokhov et al., in Proceedings of the 2009 IEEE Particle Accelerator Conference, Vancouver, 2009, p. 1836

    Google Scholar 

  39. V. Shiltsev et al., in Proceedings of the International Particle Accelerator Conference, Kyoto, 2010, p. 1243

    Google Scholar 

  40. W. Scandale et al., Phys. Rev. Lett. 101, 234801 (2008)

    Article  ADS  Google Scholar 

  41. R. Fliller et al., Phys. Rev. ST Accel. Beams 9, 013501 (2006)

    Google Scholar 

  42. V. Biryukov, CATCH, 1.4 User’s Guide. CERN SL/Note 93-74 AP (1993)

    Google Scholar 

  43. V. Shiltsev, in Proceedings of LHC-LUMI-06 CARE-HHH-APD Workshop, Valencia, 2006, CERN-2007-002 (2007), p. 92

    Google Scholar 

  44. V. Shiltsev, in Proceedings of BEAM07 CARE-HHH-APD Workshop, Geneva, 2007, CERN-2008-005 (2007), p. 46

    Google Scholar 

  45. D. Shatilov et al., in Proceedings of the 2005 IEEE Particle Accelerator Conference, Knoxville, 2005, p. 4138

    Google Scholar 

  46. G. Robert-Demolaize et al., in Proceedings of the 2005 IEEE Particle Accelerator Conference, Knoxville, 2005, p. 4084

    Google Scholar 

  47. V. Shiltsev et al., in Proceedings of the European Particle Accelerator Conference, Genoa, 2008, p. 292

    Google Scholar 

  48. J.C. Smith et al., in Proceedings of the 2009 IEEE Particle Accelerator Conference, Vancouver, 2009, WE6RFP031

    Google Scholar 

  49. G. Stancari et al., in Proceedings of the International Particle Accelerator Conference, Kyoto, 2010, p. 1698

    Google Scholar 

  50. G. Stancari et al., in Proceedings of 14th Advanced Accelerator Concepts Workshop, Annapolis, 2010, AIP Conference Proceedings 1299, 638

    Google Scholar 

  51. G. Stancari et al., in Proceedings of the 2011 IEEE Particle Accelerator Conference, New York, 2011, MOP147

    Google Scholar 

  52. G. Stancari et al., Phys. Rev. Lett. 107, 084802 (2011)

    Article  ADS  Google Scholar 

  53. M. Seidel, Ph.D. Thesis, Hamburg University, DESY 94-103 (1994)

    Google Scholar 

  54. D. Edwards, M. Syphers, Introduction to the Physics of High Energy Accelerators (Wiley, New York, 1993)

    Book  Google Scholar 

  55. J. Steimel et al., in Proceedings of the 2003 IEEE Particle Accelerator Conference, Portland, 2003, p. 48

    Google Scholar 

  56. A. Wrulich, Single-Beam Lifetime, in CERN Accelerator School, 5th General Accelerator Physics Course, CERN Preprint 94-001 (1994)

    Google Scholar 

  57. V. Lebedev, in Proceedings of the 33rd ICFA Advanced Beam Dynamics Workshop on High Brightness Hadron Beam (Bensheim, 2004), AIP Conference Proceedings 773, in I. Hoffmann (ed) Comprehensive theoretical analysis of the longitudinal diffusion due to RF noise can also be found in S. Krinsky and J.M. Wang. Part. Accel. 12 (1982), p. 107

    Google Scholar 

  58. V. Lebedev, Beam Physics at Tevatron Complex, in Proceedings of the 2003 IEEE Particle Accelerator Conference, Portland, 2003, p. 29

    Google Scholar 

  59. N.V. Mokhov, V.I. Balbekov, Beam and luminosity lifetime, in Handbook of Accelerator Physics and Engineering, ed. by A.W. Chao, M. Tigner, 2nd edn. (World Scientific, Singapore, 2002), p. 218

    Google Scholar 

  60. A. Valishev, Tevatron store analysis package, Software code supported in 2006–2011, http://www-bd.fnal.gov/SDAViewersServlets/valishev_sa_catalog2.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lebedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carrigan, R. et al. (2014). Emittance Growth and Beam Loss. In: Lebedev, V., Shiltsev, V. (eds) Accelerator Physics at the Tevatron Collider. Particle Acceleration and Detection. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0885-1_6

Download citation

Publish with us

Policies and ethics