Collective Instabilities in the Tevatron Collider Run II Accelerators

  • A. Burov
  • V. LebedevEmail author
  • L. Prost
  • A. Shemyakin
  • V. ShiltsevEmail author
  • J. Steimel
  • C. Y. Tan
Part of the Particle Acceleration and Detection book series (PARTICLE)


High luminosity operation of the Tevatron during Collider Run II required high beam intensities all over the accelerator complex, and as a result, five out of six rings (except the Debuncher) had notable problems with beam stability. The instabilities of almost every type are present there: single and multibunch, transverse and longitudinal, due to electromagnetic interaction with vacuum chamber and due to interaction with ions stored in the beam, in proton and antiproton beams. In many cases, various methods to suppress the instabilities have been implemented, including various damping systems—see Table 5.1. The most severe issues with serious impact on operations were related to transverse head-tail instability in the Tevatron, transverse beam instability in the Booster, instabilities in the Recycler antiproton beams, and longitudinal instabilities in the Tevatron.


Instability Threshold Beam Loss Main Injector Bunch Length Beam Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.M. Ivanov et al., in Proceedings of the IEEE PAC’2003, Portland, OR (2003), p. 3062Google Scholar
  2. 2.
    C.-Y. Tan, J. Steimel, Fermilab Preprint FERMILAB-TM-2204, 2003Google Scholar
  3. 3.
    P.M. Ivanov et al., in Proceedings of IEEE PAC’2005, Knoxville, TN (2005), p. 2756.Google Scholar
  4. 4.
    V. Lebedev, A. Burov, W. Pellico, X. Yang, Prepint FERMILAB-CONF-06-205-AD, 2006Google Scholar
  5. 5.
    A. Burov, V. Lebedev, Phys. Rev. ST Accel. Beams 10, 054202 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    L.R. Prost et al., Transverse Instabilities in the FERMILAB Recycler, arXiv:1201.4168 (2012)Google Scholar
  7. 7.
    A. Burov, V. Lebedev, Phys. Rev. ST Accel. Beams 12, 034201 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A. Burov, V. Lebedev, AIP Conf. Proc. 773, 350 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    R. Moore et al., in Proceedings of the IEEE PAC’2003, Portland, OR, p. 1751Google Scholar
  10. 10.
    W. Guo et al., FERMILAB-TM-2203 (2003)Google Scholar
  11. 11.
    C.-Y. Tan, J. Steimel, FERMILAB-TM-2184, 2002Google Scholar
  12. 12.
    S.C. Snowdon, Fermilab TM-277, 1970Google Scholar
  13. 13.
    A. Ruggiero, Fermilab FN-220 0402 (1971)Google Scholar
  14. 14.
    R. Gluckstern, Fermilab TM-1374, 1985Google Scholar
  15. 15.
    K.Y. Ng, Fermilab FN-0744, 2004Google Scholar
  16. 16.
    A. Macridin, P. Spentzouris, J. Amundson, L. Spentzouris, D. McCarron, Phys. Rev. ST Accel. Beams 14, 061003 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Burov, V. Lebedev, FERMILAB-CONF-02-101-T, 2002Google Scholar
  18. 18.
    A. Burov, V. Lebedev, FERMILAB-CONF-02-100-T, 2002Google Scholar
  19. 19.
    A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993)Google Scholar
  20. 20.
    A. Burov, LHC Project Note 353, 2004Google Scholar
  21. 21.
    J. Crisp, Fermilab-TM-2145, 2001Google Scholar
  22. 22.
    K. Yokoya, H. Koiso, Part. Accel. 27, 181 (1990)Google Scholar
  23. 23.
    R. Gluckstern, J. van Zeijts, B. Zotter, Phys. Rev. E 47, 656–663 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    L.R. Prost et al., in Status of Antiproton Accumulation and Cooling at Fermilab’s Recycler. Proceedings of the COOL’09, Lanzhou (2009) MOM1MCIO01Google Scholar
  25. 25.
    A. Burov, V. Lebedev, PRSTAB 12, 034201 (2009)Google Scholar
  26. 26.
    L.R. Prost et al., in Transverse Instability of the Antiproton Beam in the Recycler Ring. Proceedings of the PAC’11, New York (2011)Google Scholar
  27. 27.
    A. Burov, V. Lebedev, AIP Conf. Proc. 773, 350–354 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    V. Balbekov, PRSTAB 9, 064401 (2006)Google Scholar
  29. 29.
    A. Burov, Phys. Rev. ST Accel. Beams 12, 044202 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    L. Michelotti, Phys. Rev. ST Accel. Beams 6, 024001 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A. Burov, in Instabilities and Phase Space Tomography in RR. Fermilab Internal Report beams-doc-3641 (2010)Google Scholar
  32. 32.
    N. Eddy, J.L. Crisp, M. Hu, AIP Conf. Proc. 868, 293–297 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    N. Eddy, J.L. Crisp, M. Hu, in Measurements and Analysis of Beam Transfer Functions in the Fermilab Recycler Ring Using the Transverse Digital Damper System, Proceedings of the EPAC’08, Genoa (2008)Google Scholar
  34. 34.
    C.M. Bhat, Phys. Lett. A 330, 481–486 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Yang, J. Zagel, Fermilab Internal Note beam-doc-3649 (2010),

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations