Advertisement

Epstein–Barr Virus: Pathogenesis and Host Immune Response

Chapter

Abstract

Epstein–Barr virus (EBV) is a human gamma-herpesvirus with a large double-stranded DNA genome (168–184 kbp) that encodes for nearly 100 genes. There are two closely related EBV subtypes, EBV-1 and EBV-2, which differ in genetic sequence, biological properties, and geographical distribution. The viral genome is composed of two terminal repeat units, five unique regions, and four internal repeat units. The genes can be broadly divided into latent genes and lytic genes. Latent genes ensure virus persistence in infected cells by maintaining virus copy number, inhibiting immune recognition, blocking apoptosis, and providing tonic growth signals to infected cells. Lytic genes are responsible for virus production, by switching on the replication program, blocking apoptosis, inhibiting immune recognition, activating infected cells, and producing virion structural components. The mature enveloped virion is composed of a dense DNA core, icosahedral capsid, amorphous tegument protein, and a phospholipid envelope. EBV infection is transmitted from human to human through saliva. After a brief phase of lytic infection within oral epithelium, EBV infects naïve tonsillar B cells by binding of the EBV envelope glycoprotein gp350/220 to the B-cell CR2/CD21 receptor. After intracellular release from the capsid the linear DNA molecule forms a closed loop by fusion within the terminal regions. In latency, several copies of the circular episomal form remain in the nucleus, with host cell DNA polymerase-dependent replication limited to the cellular S phase, a feature that ensures partitioning of virus to all daughter cells. Under the influence of EBV latent transforming genes, infected B cells rapidly proliferate within lymphoid tissues until checked by a vigorous anti-viral immune response comprised of EBV-specific antibodies, EBV-specific cytotoxic T cells, and NK cells. Some EBV-infected B cells mature into plasma cells and switch from latency to lytic phase with end-stage virus replication. Following this initial phase, latent-infected B cells persist by severely limiting expression of EBV proteins, thus avoiding immune recognition. After recovery from primary infection, these quiescent long-lived EBV-infected memory B cells freely recirculate in blood and, in the healthy host, largely remain in a tightly latent state, with low-level lytic replication associated with plasmacytic differentiation. In the asymptomatic virus carrier state, continuous low-level lytic replication in the oral region leads to shedding of virus in saliva and persistence of an anti-viral immune response.

Keywords

Infectious Mononucleosis Lytic Replication Lytic Gene Follicular Dendritic Cell Sarcoma Dendritic Cell Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee YS, Tanaka A, Lau RY, Nonoyama M, Rabin H. Comparative studies of herpesvirus papio (baboon herpesvirus) DNA and Epstein-Barr virus DNA. J Gen Virol. 1980;51:245–53.PubMedGoogle Scholar
  2. 2.
    Böcker JF, Tiedemann KH, Bornkamm GW, zur Hausen H. Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology. 1980;101:291–5.PubMedGoogle Scholar
  3. 3.
    Kieff E, Dambaugh T, Heller M, et al. The biology and chemistry of Epstein-Barr virus. J Infect Dis. 1982;146:506–17.PubMedGoogle Scholar
  4. 4.
    Lapin BA, Timanovskaya VV, Yakovleva LA. Herpesvirus HVMA: a new representative in the group of the EBV-like B-lymphotropic herpesviruses of primates. Haematol Blood Transfus. 1985;29:312–3.PubMedGoogle Scholar
  5. 5.
    Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.PubMedGoogle Scholar
  6. 6.
    Diehl V, Henle G, Henle W, Kohn G. Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J Virol. 1968;2:663–9.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Henle G, Henle W, Diehl V. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci U S A. 1968;59:94–101.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Weiss L, Movahed L. In situ demonstration of Epstein-Barr viral genomes in viral-associated B cell lymphoproliferations. Am J Pathol. 1989;134:651–9.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Su IJ, Hsieh HC. Clinicopathological spectrum of Epstein-Barr virus-associated T cell malignancies. Leuk Lymphoma. 1992;7:47–53.PubMedGoogle Scholar
  10. 10.
    Shimazaki K, Ohshima K, Haraoka S, Suzumiya J, Nakamura N, Kikuchi M. Accessory cell tumour: a clinicopathological study of 16 aggressive tumours containing EBV-positive Hodgkin and Reed-Sternberg-like giant cells. Histopathology. 2002;40:12–21.PubMedGoogle Scholar
  11. 11.
    Purgina B, Rao UN, Miettinen M, Pantanowitz L. AIDS-related EBV-associated smooth muscle tumors: a review of 64 published cases. Patholog Res Int. 2011;2011:561548.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Schiødt M, Greenspan D, Daniels TE, Greenspan JS. Clinical and histologic spectrum of oral hairy leukoplakia. Oral Surg Oral Med Oral Pathol. 1987;64:716–20.PubMedGoogle Scholar
  13. 13.
    Okano M, Gross TG. Epstein-Barr virus-associated hemophagocytic syndrome and fatal infectious mononucleosis. Am J Hematol. 1996;53:111–5.PubMedGoogle Scholar
  14. 14.
    Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol. 2006;16:251–61.PubMedGoogle Scholar
  15. 15.
    Epstein MA, Achong BG, Pope JH. Virus in cultured lymphoblasts from a New Guinea Burkitt lymphoma. Br Med J. 1967;2:290–1.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Pope JH, Achong BG, Epstein MA, Biddulph J. Burkitt lymphoma in New Guinea: establishment of a line of lymphoblasts in vitro and description of their fine structure. J Natl Cancer Inst. 1967;39:933–45.PubMedGoogle Scholar
  17. 17.
    Pope JH, Scott W, Moss DJ. Human lymphoid cell transformation by Epstein-Barr virus. Nat New Biol. 1973;246:140–1.PubMedGoogle Scholar
  18. 18.
    Hudnall SD, Ge Y, Wei L, Yang NP, Wang HQ, Chen T. Distribution and phenotype of Epstein-Barr virus-infected cells in human pharyngeal tonsils. Mod Pathol. 2005;18:519–27.PubMedGoogle Scholar
  19. 19.
    Bornkamm G, Delius H, Zimber U, Hudewentz J, Epstein M. Comparison of Epstein-Barr virus strains of different origin by analysis of the viral DNAs. J Virol. 1980;35:603–18.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Baer R, Bankier AT, Biggin MD, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310:207–11.PubMedGoogle Scholar
  21. 21.
    Lin Z, Wang X, Strong MJ, et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol. 2013;87:1172–82.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Alfieri C, Birkenbach M, Kieff E. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology. 1991;181:595–608.PubMedGoogle Scholar
  23. 23.
    Yates JL, Guan N. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol. 1991;65:483–8.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Sato H, Takimoto T, Tanaka S, Tanaka J, Raab-Traub N. Concatameric replication of Epstein-Barr virus: structure of the termini in virus-producer and newly transformed cell lines. J Virol. 1990;64:5295–300.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Tsurumi T, Fujita M, Kudoh A. Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol. 2005;15:3–15.PubMedGoogle Scholar
  26. 26.
    Hammerschmidt W, Sugden B. Replication of Epstein-Barr viral DNA. Cold Spring Harb Perspect Biol. 2013;5:a013029.PubMedGoogle Scholar
  27. 27.
    Sixbey JW, Shirley P, Chesney PJ, Buntin DM, Resnick L. Detection of a second widespread strain of Epstein-Barr virus. Lancet. 1989;2:761–5.PubMedGoogle Scholar
  28. 28.
    Apolloni A, Sculley TB. Detection of A-type and B-type Epstein-Barr virus in throat washings and lymphocytes. Virology. 1994;202:978–81.PubMedGoogle Scholar
  29. 29.
    Sculley TB, Apolloni A, Hurren L, Moss DJ, Cooper DA. Coinfection with A- and B-type Epstein-Barr virus in human immunodeficiency virus-positive subjects. J Infect Dis. 1990;162:643–8.PubMedGoogle Scholar
  30. 30.
    Peh SC, Kim LH, Poppema S. Frequent presence of subtype A virus in Epstein-Barr virus-associated malignancies. Pathology. 2002;34:446–50.PubMedGoogle Scholar
  31. 31.
    Walling DM, Flaitz CM, Nichols CM, Hudnall SD, Adler-Storthz K. Persistent productive Epstein-Barr virus replication in normal epithelial cells in vivo. J Infect Dis. 2001;184: 1499–507.PubMedGoogle Scholar
  32. 32.
    Herrmann K, Frangou P, Middeldorp J, Niedobitek G. Epstein-Barr virus replication in tongue epithelial cells. J Gen Virol. 2002;83:2995–8.PubMedGoogle Scholar
  33. 33.
    Frangou P, Buettner M, Niedobitek G. Epstein-Barr virus (EBV) infection in epithelial cells in vivo: rare detection of EBV replication in tongue mucosa but not in salivary glands. J Infect Dis. 2005;191:238–42.PubMedGoogle Scholar
  34. 34.
    Kalla M, Schmeinck A, Bergbauer M, Pich D, Hammerschmidt W. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci U S A. 2010;107:850–5.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Seto E, Moosmann A, Grömminger S, Walz N, Grundhoff A, Hammerschmidt W. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 2010;6:e1001063.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Tierney R, Kirby H, Nagra J, Desmond J, Bell A, Rickinson A. Methylation of transcription factor binding sites in the Epstein-Barr virus latent cycle promoter Wp coincides with promoter down-regulation during virus-induced B-cell transformation. J Virol. 2000;74: 10468–79.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Tierney RJ, Steven N, Young LS, Rickinson AB. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol. 1994;68:7374–85.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.PubMedGoogle Scholar
  39. 39.
    De Paschale M, Clerici P. Serological diagnosis of Epstein-Barr virus infection: problems and solutions. World J Virol. 2012;1:31–43.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Chijioke O, Azzi T, Nadal D, Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013;94(6):1185–90.PubMedGoogle Scholar
  41. 41.
    Babcock GJ, Hochberg D, Thorley-Lawson AD. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 2000;13:497–506.PubMedGoogle Scholar
  42. 42.
    Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 1985;313:812–5.PubMedGoogle Scholar
  43. 43.
    Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9:405–11.PubMedGoogle Scholar
  44. 44.
    Gires O, Kohlhuber F, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 1999;18:3064–73.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.PubMedGoogle Scholar
  46. 46.
    Babcock GJ, Thorley-Lawson DA. Tonsillar memory B cells, latently infected with Epstein-Barr virus, express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc Natl Acad Sci U S A. 2000;97:12250–5.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Thorley-Lawson DA, Babcock GJ. A model for persistent infection with Epstein-Barr virus: the stealth virus of human B cells. Life Sci. 1999;65:1433–53.PubMedGoogle Scholar
  48. 48.
    Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A. 2004;101:239–44.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Anagnostopoulos I, Hummel M, Kreschel C, Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995;85:744–50.PubMedGoogle Scholar
  50. 50.
    Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005;79:1296–307.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Tan LC, Gudgeon N, Annels NE, et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol. 1999;162:1827–35.PubMedGoogle Scholar
  52. 52.
    Kieff E, Rickinson A. Epstein–Barr virus and its replication, Fields Virolog. Lippincott Williams & Wilkins. 2007.Google Scholar
  53. 53.
    Tomkinson B, Robertson E, Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol. 1993;67: 2014–25.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Wang F, Kikutani H, Tsang SF, Kishimoto T, Kieff E. Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J Virol. 1991;65:4101–6.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993;90:9150–4.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Humme S, Reisbach G, Feederle R, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A. 2003;100:10989–94.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Rowe M, Lear AL, Croom-Carter D, Davies AH, Rickinson AB. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol. 1992;66:122–31.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol. 1997;71:4882–91.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Glickman JN, Howe JG, Steitz JA. Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol. 1988;62:902–11.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Houmani JL, Davis CI, Ruf IK. Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol. 2009;83:9844–53.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Toczyski DP, Steitz JA. EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). EMBO J. 1991;10:459–66.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Toczyski DP, Matera AG, Ward DC, Steitz JA. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci U S A. 1994;91:3463–7.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Lerner MR, Andrews NC, Miller G, Steitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1981;78:805–9.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Fok V, Friend K, Steitz JA. Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol. 2006;173:319–25.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Harley JB, Scofield RH, Reichlin M. Anti-Ro in Sjögren’s syndrome and systemic lupus erythematosus. Rheum Dis Clin North Am. 1992;18:337–58.PubMedGoogle Scholar
  66. 66.
    Yajima M, Kanda T, Takada K. Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol. 2005;79:4298–307.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Iwakiri D, Eizuru Y, Tokunaga M, Takada K. Autocrine growth of Epstein-Barr virus-positive gastric carcinoma cells mediated by an Epstein-Barr virus-encoded small RNA. Cancer Res. 2003;63:7062–7.PubMedGoogle Scholar
  68. 68.
    Iwakiri D, Sheen TS, Chen JY, Huang DP, Takada K. Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene. 2005;24:1767–73.PubMedGoogle Scholar
  69. 69.
    Samanta M, Iwakiri D, Takada K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene. 2008;27:4150–60.PubMedGoogle Scholar
  70. 70.
    Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J. 2002;21: 954–65.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Ruf IK, Lackey KA, Warudkar S, Sample JT. Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol. 2005;79:14562–9.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Zetterberg H, Stenglein M, Jansson A, Ricksten A, Rymo L. Relative levels of EBNA1 gene transcripts from the C/W, F and Q promoters in Epstein-Barr virus-transformed lymphoid cells in latent and lytic stages of infection. J Gen Virol. 1999;80(Pt 2):457–66.PubMedGoogle Scholar
  73. 73.
    Middleton T, Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol. 1994;68:4067–71.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A. 1997;94:12616–21.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Wilson JB, Bell JL, Levine AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996;15:3117–26.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Kennedy G, Komano J, Sugden B. Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A. 2003;100:14269–74.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Abbot SD, Rowe M, Cadwallader K, et al. Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol. 1990;64:2126–34.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Ling PD, Hsieh JJ, Ruf IK, Rawlins DR, Hayward SD. EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol. 1994;68:5375–83.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73:4481–4.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Wang L, Grossman SR, Kieff E. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A. 2000;97:430–5.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Strobl LJ, Höfelmayr H, Marschall G, Brielmeier M, Bornkamm GW, Zimber-Strobl U. Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J Virol. 2000;74:1727–35.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Gordadze AV, Peng R, Tan J, et al. Notch1IC partially replaces EBNA2 function in B cells immortalized by Epstein-Barr virus. J Virol. 2001;75:5899–912.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Robertson ES, Lin J, Kieff E. The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J Virol. 1996;70:3068–74.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG. EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A. 1993;90:5455–9.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E. Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol. 1990;64:3407–16.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Allday MJ, Crawford DH, Thomas JA. Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol. 1993;74(Pt 3):361–9.PubMedGoogle Scholar
  87. 87.
    Lin J, Johannsen E, Robertson E, Kieff E. Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol. 2002;76:232–42.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Parker GA, Crook T, Bain M, Sara EA, Farrell PJ, Allday MJ. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene. 1996;13:2541–9.PubMedGoogle Scholar
  89. 89.
    Harada S, Kieff E. Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol. 1997;71:6611–8.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Izumi KM, Kaye KM, Kieff ED. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1997;94:1447–52.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Dawson CW, Tramountanis G, Eliopoulos AG, Young LS. Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem. 2003;278:3694–704.PubMedGoogle Scholar
  92. 92.
    Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22:5108–21.PubMedGoogle Scholar
  93. 93.
    Dirmeier U, Hoffmann R, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene. 2005;24:1711–7.PubMedGoogle Scholar
  94. 94.
    Dudziak D, Kieser A, Dirmeier U, et al. Latent membrane protein 1 of Epstein-Barr virus induces CD83 by the NF-kappaB signaling pathway. J Virol. 2003;77:8290–8.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992;267:24157–60.PubMedGoogle Scholar
  96. 96.
    Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 1999;274: 16085–96.PubMedGoogle Scholar
  97. 97.
    Eliopoulos AG, Blake SM, Floettmann JE, Rowe M, Young LS. Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol. 1999;73:1023–35.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ. Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell. 1990;61:1315–27.PubMedGoogle Scholar
  99. 99.
    Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A. 1998;95:11963–8.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A. 1994;91:772–6.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Dykstra ML, Longnecker R, Pierce SK. Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity. 2001;14:57–67.PubMedGoogle Scholar
  102. 102.
    Stewart S, Dawson CW, Takada K, et al. Epstein-Barr virus-encoded LMP2A regulates viral and cellular gene expression by modulation of the NF-kappaB transcription factor pathway. Proc Natl Acad Sci U S A. 2004;101:15730–5.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Rechsteiner MP, Berger C, Zauner L, et al. Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol. 2008;82:1739–47.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Edwards RH, Marquitz AR, Raab-Traub N. Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol. 2008;82:9094–106.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Brooks LA, Lear AL, Young LS, Rickinson AB. Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol. 1993;67:3182–90.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Gilligan KJ, Rajadurai P, Lin JC, et al. Expression of the Epstein-Barr virus BamHI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. J Virol. 1991;65:6252–9.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Thornburg NJ, Kusano S, Raab-Traub N. Identification of Epstein-Barr virus RK-BARF0-interacting proteins and characterization of expression pattern. J Virol. 2004;78:12848–56.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Marquitz AR, Raab-Traub N. The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol. 2012;22:166–72.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Yamamoto T, Iwatsuki K. Diversity of Epstein-Barr virus BamHI-A rightward transcripts and their expression patterns in lytic and latent infections. J Med Microbiol. 2012;61:1445–53.PubMedGoogle Scholar
  110. 110.
    Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science. 2004;304:734–6.PubMedGoogle Scholar
  111. 111.
    Vereide DT, Seto E, Chiu YF, et al. Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene. 2014;33(10):1258–64.PubMedGoogle Scholar
  112. 112.
    Feederle R, Linnstaedt SD, Bannert H, et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 2011;7:e1001294.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Kusano S, Raab-Traub N. An Epstein-Barr virus protein interacts with Notch. J Virol. 2001;75:384–95.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T. Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res. 2000;60:5584–8.PubMedGoogle Scholar
  115. 115.
    zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 2000;60:2745–8.PubMedGoogle Scholar
  116. 116.
    Fiorini S, Ooka T. Secretion of Epstein-Barr virus-encoded BARF1 oncoprotein from latently infected B cells. Virol J. 2008;5:70.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Guo X, Sheng W, Zhang Y. [Malignant transformation of monkey kidney epithelial cell induced by EBV BARF1 gene and TPA]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2001;15:321–3.PubMedGoogle Scholar
  118. 118.
    Hoebe EK, Hutajulu SH, van Beek J, et al. Purified hexameric Epstein-Barr virus-encoded BARF1 protein for measuring anti-BARF1 antibody responses in nasopharyngeal carcinoma patients. Clin Vaccine Immunol. 2011;18:298–304.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Chang MS, Kim DH, Roh JK, et al. Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric carcinoma cells through regulation of NF-κB. J Virol. 2013;87:10515–23.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Klein E, Teramoto N, Gogolák P, Nagy N, Björkholm M. LMP-1, the Epstein-Barr virus-encoded oncogene with a B cell activating mechanism similar to CD40. Immunol Lett. 1999;68:147–54.PubMedGoogle Scholar
  121. 121.
    Feederle R, Kost M, Baumann M, et al. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 2000;19:3080–9.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Woellmer A, Arteaga-Salas JM, Hammerschmidt W. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression. PLoS Pathog. 2012;8:e1002902.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Zhang Q, Gutsch D, Kenney S. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol. 1994;14:1929–38.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Dreyfus DH, Nagasawa M, Pratt JC, Kelleher CA, Gelfand EW. Inactivation of NF-kappaB by EBV BZLF-1-encoded ZEBRA protein in human T cells. J Immunol. 1999;163:6261–8.PubMedGoogle Scholar
  125. 125.
    Cook ID, Shanahan F, Farrell PJ. Epstein-Barr virus SM protein. Virology. 1994;205: 217–27.PubMedGoogle Scholar
  126. 126.
    Ruvolo V, Gupta AK, Swaminathan S. Epstein-Barr virus SM protein interacts with mRNA in vivo and mediates a gene-specific increase in cytoplasmic mRNA. J Virol. 2001;75: 6033–41.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Altmann M, Hammerschmidt W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 2005;3:e404.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A. 1984;81:4510–4.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Tugizov SM, Berline JW, Palefsky JM. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 2003;9:307–14.PubMedGoogle Scholar
  130. 130.
    Pearson GR, Luka J, Petti L, et al. Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology. 1987;160:151–61.PubMedGoogle Scholar
  131. 131.
    Hayes DP, Brink AA, Vervoort MB, Middeldorp JM, Meijer CJ, van den Brule AJ. Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases. Mol Pathol. 1999;52:97–103.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Strockbine LD, Cohen JI, Farrah T, et al. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol. 1998;72:4015–21.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Packham G, Economou A, Rooney CM, Rowe DT, Farrell PJ. Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol. 1990;64:2110–6.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Marshall WL, Yim C, Gustafson E, et al. Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol. 1999;73:5181–5.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Niiro H, Otsuka T, Abe M, et al. Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res. 1992;11:209–14.PubMedGoogle Scholar
  136. 136.
    Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol. 2000;54:19–48.PubMedGoogle Scholar
  137. 137.
    Landais E, Saulquin X, Houssaint E. The human T cell immune response to Epstein-Barr virus. Int J Dev Biol. 2005;49:285–92.PubMedGoogle Scholar
  138. 138.
    Rickinson A, Kieff E. Epstein Barr Virus, Fields Virology. Lippincott Williams & Wilkins. 2007.Google Scholar
  139. 139.
    Evans AS, Niederman JC. EBV-IgA and new heterophile antibody tests in diagnosis of infectious mononucleosis. Am J Clin Pathol. 1982;77:555–60.PubMedGoogle Scholar
  140. 140.
    Henle G, Henle W. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer. 1976;17:1–7.PubMedGoogle Scholar
  141. 141.
    Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB. Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med. 2002;195:893–905.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Steven NM, Annels NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med. 1997;185:1605–17.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Steven NM, Leese AM, Annels NE, Lee SP, Rickinson AB. Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med. 1996;184:1801–13.PubMedGoogle Scholar
  144. 144.
    Callan MF, Tan L, Annels N, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med. 1998;187: 1395–402.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Long HM, Chagoury OL, Leese AM, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210:933–49.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Amyes E, Hatton C, Montamat-Sicotte D, et al. Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med. 2003;198:903–11.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Woodberry T, Suscovich TJ, Henry LM, et al. Differential targeting and shifts in the immunodominance of Epstein-Barr virus-specific CD8 and CD4 T cell responses during acute and persistent infection. J Infect Dis. 2005;192:1513–24.PubMedGoogle Scholar
  148. 148.
    Mautner J, Bornkamm GW. The role of virus-specific CD4+ T cells in the control of Epstein-Barr virus infection. Eur J Cell Biol. 2012;91:31–5.PubMedGoogle Scholar
  149. 149.
    Leen A, Meij P, Redchenko I, et al. Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol. 2001;75:8649–59.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Long HM, Haigh TA, Gudgeon NH, et al. CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol. 2005;79:4896–907.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nature Reviews Cancer 2004;4:757–768.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory Medicine, Director, Division of HematopathologyYale University School of MedicineNew HavenUSA

Personalised recommendations