Skip to main content

Epstein–Barr Virus

  • Chapter
  • First Online:
Cancers in People with HIV and AIDS
  • 986 Accesses

Abstract

There are more than one hundred viruses in the herpesvirus family, which is divided into three subfamilies, alpha, beta, and gamma, based on the genome structure and biological behavior of the viruses. Epstein–Barr virus (EBV) is one of the eight herpesviruses currently known to infect humans and is a member of the gammaherpesvirus subfamily, genus lymphocrytovirus. Like all herpesviruses it can establish latent infections and persist for the lifetime of the host. In some individuals it behaves more as a commensal than a pathogen, while in others it can cause significant and even life-threatening disease. EBV is the cause of or contributing factor to the development of a number of HIV-associated cancers, including nearly all cases of central nervous system lymphoma and plasmablastic lymphoma, as well as a high percentage of other non-Hodgkin lymphomas and Hodgkin lymphomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Appleby P, Beral V, Newton R, Reeves G. International Collaboration on HIV and Cancer: highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst. 2000;92:1823–30.

    Article  Google Scholar 

  • Balfour HH, Jr, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, Vezina HE, Thomas W, Hogquist KA. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207(1):80–8.

    Google Scholar 

  • Borza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med. 2002;8:594–9.

    Article  CAS  PubMed  Google Scholar 

  • Chesnokova LS, Hutt-Fletcher LM. Fusion of EBV with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8 and integrin binding triggers a conformational change in gHgL. J Virol. 2011;85:13214–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chesnokova LS, Nishimura S, Hutt-Fletcher L. Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral proteins gHgL to integrins avb6 or avb8. Proc Natl Acad Sci U S A. 2009;106:20464–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang H-C, Lay J-D, Hsieh W-C, Wang H-C, Chang Y, Chuang S-E, Su I-J. Epstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome. Blood. 2005;106:3090–6.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JI. Clinical aspects of Epstein-Barr virus infection. In: Robertson ES, editor. Epstein-Barr virus. Norfolk: Caister Academic Press; 2005. p. 35–54.

    Google Scholar 

  • Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target. Sci Transl Med. 2011;3:107fs7.

    Google Scholar 

  • Connolly SA, Jackson JO, Jardetzky TS, Longnecker R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol. 2011;9:369–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein MA. The origins of EBV research: discovery and characterization of the virus. In: Robertson ES, editor. Epstein-Barr virus. Norfolk: Caister Academic Press; 2005. p. 1–14.

    Google Scholar 

  • Fingeroth JD, Diamond ME, Sage DR, Hayman J, Yates JL. CD-21 dependent infection of an epithelial cell line, 293, by Epstein-Barr virus. J Virol. 1999;73:2115–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frappier L. Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol. 2012;22:154–61.

    Article  CAS  PubMed  Google Scholar 

  • Fukayama M. Epstein-Barr virus and gastric carcinoma. Pathol Int. 2010;60:337–50.

    Article  CAS  PubMed  Google Scholar 

  • Gore M, Hutt-Fletcher L. The BDLF2 protein of Epstein-Barr virus is a type II glycosylated envelope protein whose processing is dependent on coexpression with the BMRF2 protein. Virology. 2008;383:162–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenspan JS, Greenspan D, Lennette ET, Abrams DI, Conant MA, Petersen V, Freese UK. Replication of Epstein-Barr virus within the epithelial cells of oral “hairy” leukoplakia, an AIDS-associated lesion. New Engl J Med. 1985;313:1564–71.

    Article  CAS  PubMed  Google Scholar 

  • Gromminger S, Mautner J, Bornkamm GW. Burkitt lymphoma: the role of Epstein-Barr virus revisited. Br J Haematol. 2012;156:719–29.

    Article  PubMed  Google Scholar 

  • Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog. 2009;7:e10000496.

    Google Scholar 

  • Heath E, Beque-Pastoe N, Chaganti S, Croom-Carter D, Shannon-Lowe C, Kube D, Feederle R, Delecluse HJ, Rickinson AB, Bell AJ. Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog. 2012;8:e1002697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henle G, Henle W. Epstein-Barr virus-specific IgA serum antibodies is an outstanding feature of nasopharyngeal carcinoma. Int J Cancer. 1976;17:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, Amrolia PJ, Hurwitz JL, Brenner MK, Rooney CM. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;4:925–35.

    Article  Google Scholar 

  • Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to virus infection in humans: lessons from Epstein-Barr virus. Ann Rev Immunol. 2007;25:587–617.

    Article  CAS  Google Scholar 

  • Hochberg D, Middledorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A. 2004;101:239–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshino Y, Katano H, Zou P, Hohman P, Marques A, Tyring SK, Follman D, Cohen JI. Long term administration of valacyclovir reduces the number of Epstein-Barr virus (EBV)-infected B cells but not the number of EBV DNA copies per B cell in healthy volunteers. J Virol. 2009;83:11857–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutt-Fletcher LM. Epstein-Barr virus entry. J Virol. 2007;81:7825–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imai S, Nishikawa J, Takada K. Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol. 1998;72:4371–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Israel BF, Kenney SC. EBV lytic infection. In: Robertson ES, editor. Epstein-Barr virus. Norfolk: Caister Academic Press; 2005. p. 571–611.

    Google Scholar 

  • Jiang R, Scott RS, Hutt-Fletcher LM. Epstein-Barr virus shed in saliva is high in B cell tropic gp42. J Virol. 2006;80:7281–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang R, Gu X, Nathan C, Hutt-Fletcher L. Laser-capture microdissection of oropharyngeal epithelium indicates restriction of Epstein-Barr virus receptor/CD21 mRNA to tonsil epithelial cells. J Oral Pathol Med. 2008;37:626–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, Sarracino D, Kieff E. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A. 2004;101:16286–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kieff ED, Rickinson AB. Epstein-Barr virus and its replication. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2603–54.

    Google Scholar 

  • Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiated the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005;79:1296–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo KW, Chung GT, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol. 2012;22:79–86.

    Article  CAS  PubMed  Google Scholar 

  • Long HM, Taylor GS, Rickinson A. Immune defence against EBV and EBV-associated disease. Curr Opin Immunol. 2011;23:258–64.

    Article  CAS  PubMed  Google Scholar 

  • Luzuriaga K, Sullivan JL. Infectious mononucleosis. New Engl J Med. 2010;362:1993–2000.

    Article  CAS  PubMed  Google Scholar 

  • Magrath I. Epidemiology: clues to the pathogenesis of Burkitt’s lymphoma. Br J Haematol. 2012;156:744–56.

    Article  CAS  PubMed  Google Scholar 

  • Matthews GV, Bower M, Mandalia S, Powles T, Nelson MR, Gazzard BG. Changes in acquired immunodeficiency syndrome-related lymphoma since the introduction of highly active antiretroviral therapy. Blood. 2000;96:2730–4.

    CAS  PubMed  Google Scholar 

  • Mettenleiter TC. Herpesvirus assembly and egress. J Virol. 2002;76:1537–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nava VE, Jaffe ES. The pathology of NK-cell lymphomas and leukemias. Adv Anat Pathol. 2005;12:27–34.

    Article  PubMed  Google Scholar 

  • Nokta M. Oral manifestations of AIDS. Curr HIV/AIDS Rep. 2008;5:5–12.

    Article  PubMed  Google Scholar 

  • Odumade OA, Hogquist KA, Balfour Jr HH. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev. 2011;24:193–209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ressing ME, van Leeuwen D, Verreck FAW, Gomez R, Heemskerk B, Toebes M, Mullen MM, Jardetzky TS, Longnecker R, Schilham MW, Ottenhoff THM, Neefjes J, Schumacher TN, Hutt-Fletcher LM, Wiertz EJHJ. Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition. Proc Natl Acad Sci U S A. 2003;100:11583–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rickinson AB, Kieff E. Epstein-Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2655–700.

    Google Scholar 

  • Sashihara J, Hoshino Y, Bowman JJ, Krogmann T, Burbelo PD, Coffield VM, Kamrud K, Cohen JI. Soluble rhesus lymphocryptovirus gp30 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog. 2011;7:e1002308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shah KM, Young LS. Epstein-Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin Microbiol Infect. 2009;15:982–8.

    Article  CAS  PubMed  Google Scholar 

  • Shannon-Lowe CD, Neuhierl B, Baldwin G, Rickinson AB, Delecluse H-J. Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci U S A. 2006;103:7065–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sokal EM, Hoppenbrouwers K, Vandemeulen C, Moutchen M, Leonard P, Moreels M, Haumont M, Smets F, Denis M. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Inf Dis. 2007;196: 1749–53.

    Article  Google Scholar 

  • Takada K. Cross-linking of cell surface immunoglobulin induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer. 1984;33:27–32.

    Article  CAS  PubMed  Google Scholar 

  • Thorley-Lawson DA, Gross A. Persistence of Epstein-Barr virus and the origins of associated lymphomas. New Engl J Med. 2004;350:1328–37.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama H, Imai S, Shimizu N, Takada K. Epstein-Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol. 1997;71:5688–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Y. Seroepidemiological studies on nasopharyngeal carcinoma in China. Adv Cancer Res. 1985;44:121–38.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhang LG, Wu YC, Huang YS, Huang NQ, Li JY, Wang B, Jiang MK, Fang Z, Meng NN. Prospective studies on nasopharyngeal carcinoma in Epstein-Barr virus IgA/VCA antibody-positive persons in Wuzhou City, China. Int J Cancer. 1985;36:545–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey Hutt-Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hutt-Fletcher, L. (2014). Epstein–Barr Virus. In: Yarchoan, R. (eds) Cancers in People with HIV and AIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0859-2_6

Download citation

Publish with us

Policies and ethics