Advertisement

Conjunctival Carcinoma

  • Kenneth O. Simbiri
  • Erle S. Robertson
Chapter

Abstract

Conjunctival carcinoma encompasses several eye neoplasms that include squamous cell carcinoma (SCC) and malignant melanoma. In both cases the patients tend to be older males, often with a significant history of chronic sun exposure. Ocular surface squamous neoplasia (OSSN) is a term used to describe conjunctival or corneal neoplastic growth; it encompasses a range of conditions from simple dysplasia to conjunctival intraepithelial neoplasia (CIN) and invasive SCC. There is evidence that conjunctival squamous cell carcinoma (CSCC) is becoming more common, more aggressive, and affecting more young people, especially women. Immunocompromised patients, including those infected with HIV, are predisposed to developing these neoplasms. There is mounting evidence that one or more infectious agents, especially types of human papillomavirus, may be involved in the pathogenesis of CSCC, but there is still some uncertainty about the etiologic role of these agents and additional research is needed.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Malt Lymphoma Xeroderma Pigmentosum Invasive Squamous Cell Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ateenyi-Agaba C. Conjunctival squamous-cell carcinoma associated with HIV infection in Kampala, Uganda. Lancet. 1995;345:695–6.PubMedCrossRefGoogle Scholar
  2. Chisi SK, Kollmann MK, Karimurio J. Conjunctival squamous cell carcinoma in patients with human immunodeficiency virus infection seen at two hospitals in Kenya. East Afr Med J. 2006;83:267–70.PubMedCrossRefGoogle Scholar
  3. Feng H, Taylor JL, Benos PV, et al. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. J Virol. 2007;81(20):11332–40.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ferreri AJ, Guidoboni M, Ponzoni M, et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst. 2004;96:586–94.PubMedCrossRefGoogle Scholar
  5. Ferreri AJ, Ponzoni M, Viale E, et al. Association between Helicobacter pylori infection and MALT-type lymphoma of the ocular adnexa: clinical and therapeutic implications. Hematol Oncol. 2006a;24:33–7.PubMedCrossRefGoogle Scholar
  6. Ferreri AJ, Ponzoni M, Guidoboni M, et al. Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst. 2006b;98:1375–82.PubMedCrossRefGoogle Scholar
  7. Ferreri AJ, Viale E, Guidoboni M, et al. Clinical implications of hepatitis C virus infection in MALT-type lymphoma of the ocular adnexa. Ann Oncol. 2006c;17:769–72.PubMedCrossRefGoogle Scholar
  8. Fox JG, Beck P, Dangler CA, et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med. 2000;6:536–42.PubMedCrossRefGoogle Scholar
  9. Grulich AE, Li Y, McDonald AM, et al. Decreasing rates of Kaposi’s sarcoma and non-Hodgkin’s lymphoma in the era of potent combination anti-retroviral therapy. AIDS. 2001;15:629–33.PubMedCrossRefGoogle Scholar
  10. Gupta N, Sachdev R, Tandon R. Ocular surface squamous neoplasia in xeroderma pigmentosum: clinical spectrum and outcome. Graefes Arch Clin Exp Ophthalmol. 2011;249:1217–21.PubMedCrossRefGoogle Scholar
  11. Halbert CL, Demers GW, Galloway DA. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol. 1992;66:2125–34.PubMedCentralPubMedGoogle Scholar
  12. Helt AM, Galloway DA. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis. 2003;24:159–69.PubMedCrossRefGoogle Scholar
  13. Hirst LW, Axelsen RA, Schwab I. Pterygium and associated ocular surface squamous neoplasia. Arch Ophthalmol. 2009;127:31–2.PubMedCrossRefGoogle Scholar
  14. Kestelyn P, Stevens AM, Ndayambaje A, Hanssens M, van de Perre P. HIV and conjunctival malignancies. Lancet. 1990;336:51–2.PubMedCrossRefGoogle Scholar
  15. Macarez R, Bossis S, Robinet A, et al. Conjunctival epithelial neoplasias in organ transplant patients receiving cyclosporine therapy. Cornea. 1999;18:495–7.PubMedCrossRefGoogle Scholar
  16. Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958–65.PubMedCrossRefGoogle Scholar
  17. McDonnell JM, McDonnell PJ, Mounts P, Wu TC, Green WR. Demonstration of papillomavirus capsid antigen in human conjunctival neoplasia. Arch Ophthalmol. 1986;104:1801–5.PubMedCrossRefGoogle Scholar
  18. Midena E, Angeli CD, Valenti M, et al. Treatment of conjunctival squamous cell carcinoma with topical 5-fluorouracil. Br J Ophthalmol. 2000;84:268–72.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Mikropoulos D, Mavrikakis I, Ziakas NG, Konstas AG, Boboridis KG. Kaposi’s sarcoma of the bulbar conjunctiva in an immunocompetent patient. Case Rep Ophthalmol. 2011;2(2):193–7.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Morgenstern KE, Givan J, Wiley LA. Long-term administration of topical interferon alfa-2beta in the treatment of conjunctival squamous papilloma. Arch Ophthalmol. 2003;121:1052–3.PubMedCrossRefGoogle Scholar
  21. Newton R, Ferlay J, Reeves G, Beral V, Perkin DM. Incidence of squamous cell carcinoma of the eye increases with increasing levels of ambient solar ultraviolet radiation. Lancet. 1996;2:1450–1.CrossRefGoogle Scholar
  22. Palazzi MA, Erwenne CM, Villa LL. Detection of human papillomavirus in epithelial lesions of the conjunctiva. Sao Paulo Med J. 2000;118:125–30.PubMedCrossRefGoogle Scholar
  23. Peralta-Zaragoza O, Bermúdez-Morales V, Gutiérrez-Xicotencatl L, et al. E6 and E7 oncoproteins from human papillomavirus type 16 induce activation of human trans-forming growth factor beta1 promoter throughout Sp1 recognition sequence. Viral Immunol. 2006;19:468–80.PubMedCrossRefGoogle Scholar
  24. Porges Y, Groisman GM. Prevalence of HIV with conjunctival squamous cell neoplasia in an African provincial hospital. Cornea. 2003;22:1–4.PubMedCrossRefGoogle Scholar
  25. Restelli M, Grinstein S, Gattuso P, Preciado MV, Brunzini MA, Zarate J, Mosquera JM, Gould VE. Immunolocalization of the Epstein–Barr nuclear antigen-1 in conjunctival squamous carcinomas and dysplasias. Hum Pathol. 2005;36(4):325–9.PubMedCrossRefGoogle Scholar
  26. Scott IU, Karp CL, Nuovo GJ. Human papillomavirus 16 and 18 expression in conjunctival intraepithelial neoplasia. Ophthalmology. 2002;109:542–7.PubMedCrossRefGoogle Scholar
  27. Shelil AE, Shields CL, Shields JA, et al. Aggressive conjunctival squamous cell carcinoma in a patient following liver transplantation. Arch Ophthalmol. 2003;121:280–2.PubMedCrossRefGoogle Scholar
  28. Simbiri KO, Robertson ES. Characterization of the OSSN microbiome in HIV-1 infected patients. Cancer Clin Oncol. 2012;1:1.Google Scholar
  29. Simbiri KO, Murakami M, Feldman M, Steenhoff AP. Multiple oncogenic viruses identified in Ocular surface squamous neoplasia in HIV-1 patients. Infect Agent Cancer. 2010;5:6.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Song S, Gulliver GA, Lambert PF. Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. Proc Natl Acad Sci U S A. 1998;95:2290–5.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Spitzer MS, Batumba NH, Chirambo T, Bartz-Schmidt KU. Ocular surface squamous neoplasia as the first apparent manifestation of HIV infection in Malawi. Clin Experiment Ophthalmol. 2008;36:422–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Microbiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations