Skip to main content

Tissue Engineering for Neurogenic Bladder

  • Chapter
  • First Online:

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Failure to store urine due to a neurologic condition or insult can be addressed with multiple modalities. Recently, the role and variety of pharmacologic interventions, neuromodulation, and intradetrusor onabotulinumtoxinA injection have increased. Augmentation cystoplasty retains a place in the treatment algorithm; however, its role has seemingly diminished owing to the morbidity incurred with the use of enteric segments. The chief concern is that these tissues are not created for, and thus are not optimal for, urinary storage. The introduction of tissue engineering strategies by incorporating scaffolds and cell cultures has the potential to remediate the deficiencies seen in enteric segments. Theoretically, this technology may also optimize the bladder’s ability to regenerate and restore its original structure and function. The goal of this chapter is to focus on the advantages and disadvantages of each approach to tissue engineering for the bladder and summarize the key details detailing the progress of the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niknead KG, Atala A. Bladder augmentation techniques in women. Int Urogynecol J Pelvic Floor Dysfunct. 2000;11:156–69.

    Article  Google Scholar 

  2. Hensle TW, Gilbert SM. A review of metabolic consequences and long-term complications of enterocystoplasty in children. Curr Urol Rep. 2007;8:157–62.

    Article  PubMed  Google Scholar 

  3. Somani BK, et al. Bowel dysfunction after transposition of intestinal segments into the urinary tract: 8-year prospective cohort study. J Urol. 2007;177:1793–8.

    Article  PubMed  Google Scholar 

  4. Cartwright PC, Snow BW. Bladder autoaugmentation: partial detrusor excision to augment the bladder without use of bowel. J Urol. 1989;142:1050–3.

    CAS  PubMed  Google Scholar 

  5. Bellinger MF. Ureterocystoplasty: a unique method for vesical augmentation in children. J Urol. 1993;149:811–3.

    CAS  PubMed  Google Scholar 

  6. Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML. Principles and application of cell delivery systems for periodontal regeneration. Periodontology. 2006;41:123–35.

    Article  Google Scholar 

  7. Petrovic V, Stankovic J, Stefanovic V. Tissue engineering of the urinary bladder: current concepts and future perspectives. Sci World J. 2011;11:1479–88.

    Article  CAS  Google Scholar 

  8. Atala A. Tissue engineering of human bladder. Br Med Bull. 2011;97:81–104.

    Article  PubMed  Google Scholar 

  9. Cumberland VH. A preliminary report on the use of prefabricated nylon weave in the repair of ventral hernia. Med J Aust. 1952;1:143.

    CAS  PubMed  Google Scholar 

  10. Scales JT. Materials for hernia repair. Proc R Soc Med. 1953;46:647.

    CAS  PubMed  Google Scholar 

  11. Gomelsky A, Dmochowski RR. Biocompatibility assessment of synthetic sling materials for female stress urinary incontinence. J Urol. 2007;178:1171–81.

    Article  PubMed  Google Scholar 

  12. Atala A. Engineering tissues, organs, and cells. J Tissue Eng Regen Med. 2007;1:83–96.

    Article  CAS  PubMed  Google Scholar 

  13. Bergsma JE, Rozema FR, Bos RR, et al. In vivo degradation and biocompatibility study of in vitro, pre-degraded as-polymerized polyactide particles. Biomaterials. 1995;16:267–74.

    Article  CAS  PubMed  Google Scholar 

  14. Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptide modification of a new biodegradable copolymer poly (lactic acid-co-lysine). J Am Chem Soc. 1993;115:11010–1.

    Article  CAS  Google Scholar 

  15. Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD peptide-modified poly (lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997;35:213–23.

    Article  Google Scholar 

  16. Roth CC, Kropp BP. Recent advances in urologic tissue engineering. Curr Urol Rep. 2009;10:119–25.

    Article  PubMed  Google Scholar 

  17. Li ST. Biologic biomaterials: tissue derived biomaterials (collagen). In: Brozino JD, editor. The biomedical engineering handbook. Boca Raton, FL: CRS Press; 1995. p. 627–47.

    Google Scholar 

  18. Silver FH, Pins G. Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Eff Med Implants. 1992;2:67–80.

    CAS  PubMed  Google Scholar 

  19. Sams AE, Nixon AJ. Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage. 1995;3:47–59.

    Article  CAS  PubMed  Google Scholar 

  20. Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–8.

    Article  CAS  PubMed  Google Scholar 

  21. Atala A. Tissue engineering of reproductive tissues and organs. Fertil Steril. 2012;98:21–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kropp BP. Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol. 1998;16:262–7.

    Article  CAS  PubMed  Google Scholar 

  23. Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C. 2010;16:1201–11.

    Article  CAS  Google Scholar 

  24. Sharma AK, Bury MI, Marks AJ, Fuller NJ, Meisner JW, Tapaskar N, et al. A non-human primate model for urinary bladder regeneration utilizing autologous sources of bone marrow derived mesenchymal stem cells. Stem Cells. 2011;29:241–50.

    Article  CAS  PubMed  Google Scholar 

  25. Chung SY, Krivorov NP, Rausei V, Thomas L, Frantzen M, Landsittel D, et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol. 2005;174:353–9.

    Article  PubMed  Google Scholar 

  26. Ashley RA, Roth CC, Palmer BW, Kibar Y, Routh JC, Fung KM, et al. Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. BJU Int. 2010;105:1462–8.

    Article  PubMed  Google Scholar 

  27. Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006;98:1100–5.

    Article  PubMed  Google Scholar 

  28. Horst M, Madduri S, Milleret V, Sulser T, Gobet R, Eberli D. A bilayered hybrid microfibrous PLGA—acellular matrix scaffold for hollow organ tissue engineering. Biomaterials. 2013;34:1537–45.

    Article  CAS  PubMed  Google Scholar 

  29. Mondalek FG, Lawrence BJ, Kropp BP, Grady BP, Fung KM, Madihally SV, Lin HK. The incorporation of poly(lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Biomaterials. 2008;29:1159–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Roth CC, Mondalek FG, Kibar Y, Ashley RA, Bell CH, Califano JA, Madihally SV, Frimberger D, Lin HK, Kropp BP. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int. 2011;108:148–55.

    Article  PubMed  Google Scholar 

  31. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    Article  CAS  PubMed  Google Scholar 

  32. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  33. Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA, Stahl GL. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Eng. 2006;12:301–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, Kaplan DL. Gel spinning of silk tubes for tissue engineering. Biomaterials. 2008;29:4650–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mauney JR, Cannon GM, Lovett ML, Gong EM, Di Vizio D, Gomez 3rd P, Kaplan DL, Adam RM, Estrada Jr CR. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials. 2011;32:808–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26:147–55.

    Article  CAS  PubMed  Google Scholar 

  37. Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature. 2002;418:741.

    Article  CAS  PubMed  Google Scholar 

  38. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–85.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29:3415–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Numata K, Cebe P, Kaplan DL. Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials. 2010;31:2926–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sanz-Herrera JA, Garcia-Aznar JM, Doblare M. On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 2009;5:219–29.

    Article  CAS  PubMed  Google Scholar 

  42. Su ST, Huang HF, Chang SF. Encrusted bladder stone on non-absorbable sutures after a cesarean section: a case report. JTUA. 2009;20:143–5.

    Google Scholar 

  43. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    Article  CAS  PubMed  Google Scholar 

  44. Tu DD, Seth A, Gil ES, Kaplan DL, Mauney JR, Estrada Jr CR. Evaluation of biomaterials for bladder augmentation using cystometric analyses in various rodent models. J Vis Exp. 2012;(66)pii: 3981.

    Google Scholar 

  45. Gomez 3rd P, Gil ES, Lovett ML, Rockwood DN, Di Vizio D, Kaplan DL, Adam RM, Estrada Jr CR, Mauney JR. The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials. 2011;32:7562–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008;29:2891–8.

    Article  CAS  PubMed  Google Scholar 

  47. Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsiloncaprolactone) scaffolds. Biomaterials. 2008;29:1422–30.

    Article  CAS  PubMed  Google Scholar 

  48. Aboushwareb T, Atala A. Stem cells in urology. Nat Clin Pract Urol. 2008;5:621–31.

    Article  CAS  PubMed  Google Scholar 

  49. Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;152:665–70.

    CAS  PubMed  Google Scholar 

  50. Scriven SD, Booth C, Thomas DF, Trejdosiewicz LK, Southgate J. Reconstitution of human urothelium from monolayer cultures. J Urol. 1997;158:1147–52.

    Article  CAS  PubMed  Google Scholar 

  51. Liebert M, Hubbel A, Chung M, Wedemeyer G, Lomax MI, Hegeman A, et al. Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation. 1997;61:177–85.

    Article  CAS  PubMed  Google Scholar 

  52. Liebert M, Wedemeyer G, Abruzzo LV, Kunkel SL, Hammerberg C, Cooper KD, et al. Stimulated urothelial cells produce cytokines and express an activated cell surface antigenic phenotype. Semin Urol. 1991;9:124–30.

    CAS  PubMed  Google Scholar 

  53. Puthenveettil JA, Burger MS, Reznikoff CA. Replicative senescence in human uroepithelial cells. Adv Exp Med Biol. 1999;462:83–91.

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen HT, Park JM, Peters CA, Adam RM, Orsola A, Atala A, et al. Cell-specific activation of the HB-EGF and ErbB1 genes by stretch in primary human bladder cells. In Vitro Cell Dev Biol Anim. 1999;35:371–5.

    Article  CAS  PubMed  Google Scholar 

  55. Lin HK, Cowan R, Moore P, Zhang Y, Yang Q, Peterson Jr JA, Tomasek JJ, Kropp BP, Cheng E. Characterization of neuropathic bladder smooth muscle cells in culture. J Urol. 2004;171:1348–52.

    Article  PubMed  Google Scholar 

  56. Lai JY, Yoon CY, Yoo JJ, Wulf T, Atala A. Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J Urol. 2002;168:1853–7.

    Article  PubMed  Google Scholar 

  57. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science. 2003;300:913–6.

    Article  CAS  PubMed  Google Scholar 

  58. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6:88–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Mimeault M, Batra SK. Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev. 2008;4:27–49.

    Article  PubMed  Google Scholar 

  60. Hristov M, Zernecke A, Schober A, et al. Adult progenitor cells in vascular remodeling during atherosclerosis. Biol Chem. 2008;389:837–44.

    Article  CAS  PubMed  Google Scholar 

  61. Jumabay M, Zhang R, Yao Y, Goldhaber JI, Boström KI. Spontaneously beating cardiomyocytes derived from white mature adipocytes. Cardiovasc Res. 2010;85:17–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Scholz T, Sumarto A, Krichevsky A, Evans GR. Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo. Arch Surg. 2011;146:666–74.

    Article  PubMed  Google Scholar 

  63. Perin L, Giuliani S, Jin D, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40:936–48.

    Article  CAS  PubMed  Google Scholar 

  64. De Coppi P, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol. 2007;177:369–76.

    Article  PubMed  Google Scholar 

  65. Kanematsu A, Yamamoto S, Noguchi T, Ozeki M, Tabata Y, Ogawa O. Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J Urol. 2003;170:1633–8.

    Article  CAS  PubMed  Google Scholar 

  66. Kropp BP, Cheng EY, Lin HK, Zhang Y. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J Urol. 2004;172:1710–3.

    Article  PubMed  Google Scholar 

  67. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–5.

    Article  CAS  PubMed  Google Scholar 

  68. Probst M, Dahiya R, Carrier S, Tanagho EA. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol. 1997;79:505–15.

    Article  CAS  PubMed  Google Scholar 

  69. Kropp BP, Rippy MK, Badylak SF, Adams MC, Keating MA, Rink RC, Thor KB. Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J Urol. 1996;155:2098–104.

    Article  CAS  PubMed  Google Scholar 

  70. Portis AJ, Elbahnasy AM, Shalhav AL, Brewer A, Humphrey P, McDougall EM, Clayman RV. Laparoscopic augmentation cystoplasty with different biodegradable grafts in an animal model. J Urol. 2000;164:1405–11.

    Article  CAS  PubMed  Google Scholar 

  71. Landman J, Olweny E, Sundaram CP, Andreoni C, Collyer WC, Rehman J, Jerde TJ, Lin K, Lee DI, Nunlist EH, Humphrey PA, Nakada SY, Clayman RV. Laparoscopic mid sagittal hemicystectomy and bladder reconstruction with small intestinal submucosa and reimplantation of ureter into small intestinal submucosa: 1-year followup. J Urol. 2004;171:2450–5.

    Article  PubMed  Google Scholar 

  72. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149–55.

    Article  CAS  PubMed  Google Scholar 

  73. Jayo MJ, Jain D, Wagner BJ, et al. Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies. J Urol. 2008;180:392–7.

    Article  PubMed  Google Scholar 

  74. Jayo MJ, Jain D, Ludlow JW, et al. Long-term durability, tissue regeneration and neo-organ growth during skeletal maturation with a neo-bladder augmentation construct. Regen Med. 2008;3:671–82.

    Article  PubMed  Google Scholar 

  75. Kwon TG, Yoo JJ, Atala A. Local and systemic effects of a tissue engineered neobladder in a canine cystoplasty model. J Urol. 2008;179:2035–41.

    Article  PubMed  Google Scholar 

  76. Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol. 1992;148:658–62.

    CAS  PubMed  Google Scholar 

  77. Atala A, Freeman MR, Vacanti JP, Shepard J, Retik AB. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol. 1993;150:608–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger R. Dmochowski M.D., M.M.H.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomelsky, A., Dmochowski, R.R. (2014). Tissue Engineering for Neurogenic Bladder. In: Wein, A., Andersson, KE., Drake, M., Dmochowski, R. (eds) Bladder Dysfunction in the Adult. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0853-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0853-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0852-3

  • Online ISBN: 978-1-4939-0853-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics