Skip to main content

Phytochemicals and Hypersensitivity Disorders

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

Phytochemicals have been shown to act on allergic disease either during allergic sensitization or on consolidated disease. There is a renewed interest in the search for new phytochemicals that could be developed as useful anti-inflammatory and antiallergic agents to reduce the risk of many diseases. A good number of plant products with anti-inflammatory and antiallergic activities have been documented, but very few of these compounds have reached clinical use and there is scant scientific evidence that could explain their mode of action. The activation of nuclear transcription factor-kappa B (NF-κB) has now been linked to a variety of inflammatory diseases, while data from numerous studies underline the importance of phytochemicals in inhibiting the pathway that activates this transcription factor.

Phytochemicals, especially phenolics, show both anti-inflammatory and antiallergic activities in vitro and in vivo. Several cellular action mechanisms are proposed to explain their mode of action. However, any single mechanism could not explain all of their in vivo activities. Possible mechanisms involve interference of polyphenols with antigen-presenting cell maturation, inhibition of Th2-type cytokine signaling and secretion, release of mediators of allergic inflammation, as well as direct effects of dietary polyphenols on food allergen solubility, digestion process, and intestinal barrier function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

∆Ψm :

Mitochondrial membrane potential

EC:

Epicatechin

EGCG:

Epigallocatechin gallate

Fcz\(\varepsilon\)RI:

High-affinity IgE receptor

GIT:

Gastrointestinal tract

IL-2R:

IL-2 receptor

IL-4R:

IL-4 receptor

JAK:

Janus kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MDC:

Monocyte-derived chemokine

NF-κB:

Nuclear transcription factor-kappa B

PUFA:

Omega-3 polyunsaturated fatty acids

ROS:

Reactive oxygen species

SOCE:

Store-operated Ca2+ entry

STAT:

Signal transducer and activator of transcription

TJ:

Tight junction

ZAP-70:

ξ-associated 70-kDa protein

References

  1. Devereux G, Seaton A: Diet as a risk factor for atopy and asthma. J Allergy Clin Immunol 2005, 115(6):1109–1117; quiz 1118.

    Article  Google Scholar 

  2. Kawai M, Hirano T, Higa S, Arimitsu J, Maruta M, Kuwahara Y, Ohkawara T, Hagihara K, Yamadori T, Shima Y et al: Flavonoids and related compounds as anti-allergic substances. Allergol Int 2007, 56(2):113–123.

    Article  CAS  Google Scholar 

  3. Bellik Y, Boukraa L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, Iguer-Ouada M: Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 2012, 18(1):322–353.

    Article  Google Scholar 

  4. Liu RH: Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 2004, 134(12 Suppl):3479S–3485S.

    CAS  Google Scholar 

  5. Yang CS, Wang X, Lu G, Picinich SC: Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 2009, 9(6):429–439.

    Article  CAS  Google Scholar 

  6. Dou QP: Molecular mechanisms of green tea polyphenols. Nutr Cancer 2009, 61(6):827–835.

    Article  CAS  Google Scholar 

  7. Butt MS, Sultan MT: Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr 2009, 49(5):463–473.

    Article  CAS  Google Scholar 

  8. Teillet F, Boumendjel A, Boutonnat J, Ronot X: Flavonoids as RTK inhibitors and potential anticancer agents. Med Res Rev 2008, 28(5):715–745.

    Article  CAS  Google Scholar 

  9. Bode AM, Dong Z: Epigallocatechin 3-gallate and green tea catechins: United they work, divided they fail. Cancer Prev Res (Phila Pa) 2009, 2(6):514–517.

    Article  CAS  Google Scholar 

  10. Singh R, Akhtar N, Haqqi TM: Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. [corrected]. Life Sci 2010, 86(25–26):907–918.

    Article  CAS  Google Scholar 

  11. Shahidi F, McDonald J, Chandrasekara A, Zhong Y: Phytochemicals of foods, beverages and fruit vinegars: chemistry and health effects. Asia Pacific Journal of Clinical Nutrition 2008, 17:380–382.

    Google Scholar 

  12. McDougall GJ, Kulkarni NN, Stewart D: Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2008, 34(1):73–80.

    Article  Google Scholar 

  13. Lewis KC, Selzer T, Shahar C, Udi Y, Tworowski D, Sagi I: Inhibition of pectin methyl esterase activity by green tea catechins. Phytochemistry 2008, 69(14):2586–2592.

    Article  CAS  Google Scholar 

  14. Allan K, Kelly FJ, Devereux G: Antioxidants and allergic disease: a case of too little or too much? Clin Exp Allergy 2010, 40(3):370–380.

    Article  CAS  Google Scholar 

  15. Tanaka T, Kouda K, Kotani M, Takeuchi A, Tabei T, Masamoto Y, Nakamura H, Takigawa M, Suemura M, Takeuchi H et al: Vegetarian diet ameliorates symptoms of atopic dermatitis through reduction of the number of peripheral eosinophils and of PGE2 synthesis by monocytes. J Physiol Anthropol Appl Human Sci 2001, 20(6):353–361.

    Article  CAS  Google Scholar 

  16. Chung SY, Champagne ET: Effects of Phytic acid on peanut allergens and allergenic properties of extracts. J Agric Food Chem 2007, 55(22):9054–9058.

    Article  CAS  Google Scholar 

  17. Chung S, Champagne ET: Effect of phytic acid on IgE binding to peanut allergens. J Allergy Clin Immunol 2006, 117(2):S38–S38.

    Article  Google Scholar 

  18. Shim JH, Choi HS, Pugliese A, Lee SY, Chae JI, Choi BY, Bode AM, Dong Z: (−)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem 2008, 283(42):28370–28379.

    Article  CAS  Google Scholar 

  19. Hirakawa S, Saito R, Ohara H, Okuyama R, Aiba S: Dual Oxidase 1 Induced by Th2 Cytokines Promotes STAT6 Phosphorylation via Oxidative Inactivation of Protein Tyrosine Phosphatase 1B in Human Epidermal Keratinocytes. J Immunol 2011, 186(8):4762–4770.

    Article  CAS  Google Scholar 

  20. Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Hori N, Watanabe T, Takahashi K, Nagawa H: Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b. J Allergy Clin Immunol 2004, 113(6):1211–1217.

    Article  CAS  Google Scholar 

  21. Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Hori N, Watanabe T, Takahashi K, Nagawa H: Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J Allergy Clin Immunol 2003, 112(5):951–957.

    Article  CAS  Google Scholar 

  22. Umeda D, Yano S, Yamada K, Tachibana H: Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 2008, 283(6):3050–3058.

    Article  CAS  Google Scholar 

  23. Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA, Tummino PJ, Luo L: Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun 2011, 406(2):194–199.

    Article  CAS  Google Scholar 

  24. Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Sasaki S, Watanabe T, Takahashi K, Nagawa H: Epigallocatechin gallate induces apoptosis of monocytes. J Allergy Clin Immunol 2005, 115(1):186–191.

    Article  CAS  Google Scholar 

  25. Yoneyama S, Kawai K, Tsuno NH, Okaji Y, Asakage M, Tsuchiya T, Yamada J, Sunami E, Osada T, Kitayama J et al: Epigallocatechin gallate affects human dendritic cell differentiation and maturation. J Allergy Clin Immunol 2008, 121(1):209–214.

    Article  CAS  Google Scholar 

  26. Nakagawa K, Okuda S, Miyazawa T: Dose-dependent incorporation of tea catechins, (−)-epigallocatechin-3-gallate and (−)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem 1997, 61(12):1981–1985.

    Article  CAS  Google Scholar 

  27. Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caudron AS, Pineau B, Weber P: A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 2003, 31(2):88–101.

    Article  CAS  Google Scholar 

  28. Ahn SC, Kim GY, Kim JH, Baik SW, Han MK, Lee HJ, Moon DO, Lee CM, Kang JH, Kim BH et al: Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and NF-kappaB. Biochem Biophys Res Commun 2004, 313(1):148–155.

    Article  CAS  Google Scholar 

  29. Matsuo N, Yamada K, Shoji K, Mori M, Sugano M: Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship. Allergy 1997, 52(1):58–64.

    Article  CAS  Google Scholar 

  30. Fujimura Y, Umeda D, Yamada K, Tachibana H: The impact of the 67 kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Arch Biochem Biophys 2008, 476(2):133–138.

    Article  CAS  Google Scholar 

  31. Inoue T, Suzuki Y, Ra C: Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C(4) secretion, and calcium influx via mitochondrial calcium dysfunction. Free Radic Biol Med 2010, 49(4):632–640.

    Article  CAS  Google Scholar 

  32. Wong CP, Nguyen LP, Noh SK, Bray TM, Bruno RS, Ho E: Induction of regulatory T cells by green tea polyphenol EGCG. Immunol Lett 2011, 139(1–2):7–13.

    Article  CAS  Google Scholar 

  33. Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL: Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro. Br J Pharmacol 2009, 158(7):1705–1712.

    Article  CAS  Google Scholar 

  34. Danesi F, Philpott M, Huebner C, Bordoni A, Ferguson LR: Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases. Mutat Res 2010, 690(1–2):139–144.

    CAS  Google Scholar 

  35. Wu D, Guo Z, Ren Z, Guo W, Meydani SN: Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med 2009, 47(5):636–643.

    Article  CAS  Google Scholar 

  36. Pae M, Ren Z, Meydani M, Shang F, Meydani SN, Wu D: Epigallocatechin-3-gallate directly suppresses T cell proliferation through impaired IL-2 utilization and cell cycle progression. J Nutr 2010, 140(8):1509–1515.

    Article  CAS  Google Scholar 

  37. Hushmendy S, Jayakumar L, Hahn AB, Bhoiwala D, Bhoiwala DL, Crawford DR: Select phytochemicals suppress human T-lymphocytes and mouse splenocytes suggesting their use in autoimmunity and transplantation. Nutr Res 2009, 29(8):568–578.

    Article  CAS  Google Scholar 

  38. Noh SU, Cho EA, Kim HO, Park YM: Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int Immunopharmacol 2008, 8(9):1172–1182.

    Article  CAS  Google Scholar 

  39. Wang J, Pae M, Meydani SN, Wu D: Epigallocatechin-3-gallate inhibits expression of receptors for T cell regulatory cytokines and their downstream signaling in mouse CD4+ T cells. J Nutr 2012, 142(3):566–571.

    Article  CAS  Google Scholar 

  40. Wu H, Zhu B, Shimoishi Y, Murata Y, Nakamura Y: ( )-Epigallocatechin-3-gallate induces up-regulation of Th1 and Th2 cytokine genes in Jurkat T cells. Arch Biochem Biophys 2009, 483(1):99–105.

    Article  CAS  Google Scholar 

  41. Luz Sanz M, Corzo-Martinez M, Rastall RA, Olano A, Moreno FJ: Characterization and in vitro digestibility of bovine beta-lactoglobulin glycated with galactooligosaccharides. J Agric Food Chem 2007, 55(19):7916–7925.

    Article  Google Scholar 

  42. Huang CH, Jan RL, Kuo CH, Chu YT, Wang WL, Lee MS, Chen HN, Hung CH: Natural flavone kaempferol suppresses chemokines expression in human monocyte THP-1 cells through MAPK pathways. J Food Sci 2010, 75(8):H254–259.

    Article  Google Scholar 

  43. Lee EJ, Ji GE, Sung MK: Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm Res 2010, 59(10):847–854.

    Article  CAS  Google Scholar 

  44. Gong JH, Shin D, Han SY, Kim JL, Kang YH: Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr 2012, 142(1):47–56.

    Article  CAS  Google Scholar 

  45. O’Shea JJ, Plenge R: JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012, 36(4):542–550.

    Article  Google Scholar 

  46. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE: The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 1999, 17:701–738.

    Article  CAS  Google Scholar 

  47. Cortes JR, Perez-G M, Rivas MD, Zamorano J: Kaempferol inhibits IL-4-Induced STAT6 activation by specifically targeting JAK3. J Immunol 2007, 179(6):3881–3887.

    Article  CAS  Google Scholar 

  48. Yamashita S, Yamashita T, Yamada K, Tachibana H: Flavones suppress type I IL-4 receptor signaling by down-regulating the expression of common gamma chain. Febs Letters 2010, 584(4):775–779.

    Article  CAS  Google Scholar 

  49. Higa S, Hirano T, Kotani M, Matsumoto M, Fujita A, Suemura M, Kawase I, Tanaka T: Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. J Allergy Clin Immunol 2003, 111(6):1299–1306.

    Article  CAS  Google Scholar 

  50. Hirano T, Higa S, Arimitsu J, Naka T, Shima Y, Ohshima S, Fujimoto M, Yamadori T, Kawase I, Tanaka T: Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int Arch Allergy Immunol 2004, 134(2):135–140.

    Article  CAS  Google Scholar 

  51. Huang RY, Yu YL, Cheng WC, OuYang CN, Fu E, Chu CL: Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol 2010, 184(12):6815–6821.

    Article  CAS  Google Scholar 

  52. Okada Y, Oh-oka K, Nakamura Y, Ishimaru K, Matsuoka S, Okumura K, Ogawa H, Hisamoto M, Okuda T, Nakao A: Dietary resveratrol prevents the development of food allergy in mice. PLoS One 2012, 7(9):e44338.

    Article  CAS  Google Scholar 

  53. Fewtrell CM, Gomperts BD: Effect of flavone inhibitors of transport ATPases on histamine secretion from rat mast cells. Nature 1977, 265(5595):635–636.

    Article  CAS  Google Scholar 

  54. Pearce FL, Befus AD, Bienenstock J: Mucosal mast cells. III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J Allergy Clin Immunol 1984, 73(6):819–823.

    Article  CAS  Google Scholar 

  55. Middleton E, Jr., Drzewiecki G, Krishnarao D: Quercetin: an inhibitor of antigen-induced human basophil histamine release. J Immunol 1981, 127(2):546–550.

    CAS  Google Scholar 

  56. Cheong H, Ryu SY, Oak MH, Cheon SH, Yoo GS, Kim KM: Studies of structure activity relationship of flavonoids for the anti-allergic actions. Arch Pharm Res 1998, 21(4):478–480.

    Article  CAS  Google Scholar 

  57. Lee TP, Matteliano ML, Middleton E, Jr.: Effect of quercetin on human polymorphonuclear leukocyte lysosomal enzyme release and phospholipid metabolism. Life Sci 1982, 31(24):2765–2774.

    Article  CAS  Google Scholar 

  58. Lambert JD, Elias RJ: The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophys 2010, 501(1):65–72.

    Article  CAS  Google Scholar 

  59. Kaminski MM, Sauer SW, Klemke CD, Suss D, Okun JG, Krammer PH, Gulow K: Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J Immunol 2010, 184(9):4827–4841.

    Article  CAS  Google Scholar 

  60. Naik E, Dixit VM: Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011, 208(3):417–420.

    Article  CAS  Google Scholar 

  61. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM: Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 2011, 208(3):519–533.

    Article  CAS  Google Scholar 

  62. Bandyopadhyay P, Ghosh AK, Ghosh C: Recent developments on polyphenol-protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct 2012, 3(6):592–605.

    Article  CAS  Google Scholar 

  63. Cao H, Shi Y, Chen X: Advances on the interaction between tea catechins and plasma proteins: structure-affinity relationship, influence on antioxidant activity, and molecular docking aspects. Curr Drug Metab 2013, 14(4):446–450.

    Article  Google Scholar 

  64. Bras NF, Goncalves R, Mateus N, Fernandes PA, Ramos MJ, Do Freitas V: Inhibition of Pancreatic Elastase by Polyphenolic Compounds. J Agric Food Chem 2010, 58(19):10668–10676.

    Article  CAS  Google Scholar 

  65. Stojadinovic M, Radosavljevic J, Ognjenovic J, Vesic J, Prodic I, Stanic-Vucinic D, Cirkovic Velickovic T: Binding affinity between dietary polyphenols and beta-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chem 2013, 136(3–4):1263–1271.

    Article  CAS  Google Scholar 

  66. Tantoush Z, Apostolovic D, Kravic B, Prodic I, Mihajlovic L, Stanic-Vucinic D, Cirkovic Velickovic T: Green tea catechins of food, supplements facilitate pepsin digestion of major food allergens, but hampers their digestion if oxidized by phenol oxidase. J Funct Food 2012, 4(3):650–660.

    Article  CAS  Google Scholar 

  67. Tagliazucchi D, Verzelloni E, Conte A: Effect of some phenolic compounds and beverages on pepsin activity during simulated gastric digestion. J Agric Food Chem 2005, 53(22):8706–8713.

    Article  CAS  Google Scholar 

  68. Bravo L: Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998, 56(11):317–333.

    Article  CAS  Google Scholar 

  69. Grussu D, Stewart D, McDougall GJ: Berry Polyphenols Inhibit alpha-Amylase in Vitro: Identifying Active Components in Rowanberry and Raspberry. J Agric Food Chem 2011, 59(6):2324–2331.

    Article  CAS  Google Scholar 

  70. Goncalves B, Landbo AK, Knudsen D, Silva AP, Moutinho-Pereira J, Rosa E, Meyer AS: Effect of ripeness and postharvest storage on the phenolic profiles of Cherries (Prunus avium L.). J Agric Food Chem 2004, 52(3):523–530.

    Article  CAS  Google Scholar 

  71. Chung S-Y, Champagne ET: Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds. Food Chemistry 2009, 115(4):1345–1349.

    Article  CAS  Google Scholar 

  72. Griffiths DW: The inhibition of digestive enzymes by polyphenolic compounds. Adv Exp Med Biol 1986, 199:509–516.

    Article  CAS  Google Scholar 

  73. Rawel HM, Kroll J, Hohl UC: Model studies on reactions of plant phenols with whey proteins. Nahrung 2001, 45(2):72–81.

    Article  CAS  Google Scholar 

  74. Soares S, Mateus N, Freitas V: Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem 2007, 55(16):6726–6735.

    Article  CAS  Google Scholar 

  75. Roth-Walter F, Berin MC, Arnaboldi P, Escalante CR, Dahan S, Rauch J, Jensen-Jarolim E, Mayer L: Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer’s patches. Allergy 2008, 63(7):882–890.

    Article  CAS  Google Scholar 

  76. Prigent SV, Voragen AG, van Koningsveld GA, Baron A, Renard CM, Gruppen H: Interactions between globular proteins and procyanidins of different degrees of polymerization. J Dairy Sci 2009, 92(12):5843–5853.

    Article  CAS  Google Scholar 

  77. Cavic M, Grozdanovic M, Bajic A, Srdic-Rajic T, Andjus PR, Gavrovic-Jankulovic M: Actinidin, a protease from kiwifruit, induces changes in morphology and adhesion of T84 intestinal epithelial cells. Phytochemistry 2012, 77:46–52.

    Article  CAS  Google Scholar 

  78. Suzuki T, Hara H: Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem 2011, 22(5):401–408.

    Article  CAS  Google Scholar 

  79. Suzuki T, Hara H: Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr 2009, 139(5):965–974.

    Article  CAS  Google Scholar 

  80. Atkinson KJ, Rao RK: Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions. Am J Physiol Gastrointest Liver Physiol 2001, 280(6):G1280–1288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Ćirković Veličković .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ćirković Veličković, T., Gavrović-Jankulović, M. (2014). Phytochemicals and Hypersensitivity Disorders. In: Food Allergens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0841-7_7

Download citation

Publish with us

Policies and ethics