Skip to main content

The Vagus Nerve and Ghrelin Function

  • Chapter
  • First Online:
Central Functions of the Ghrelin Receptor

Part of the book series: The Receptors ((REC,volume 25))

Abstract

Ghrelin, a gastrointestinal hormone originally discovered in human and rat stomach, functions as the only orexigenic signal produced by peripheral tissues. Although ghrelin is considered to affect hypothalamic neurons producing agouti-related protein (AgRP) and neuropeptide Y (NPY) and induce food intake, it is still unclear how peripherally administered ghrelin activates these neurons. The vagal afferent fibers are the major neuroanatomical linkage between the gastrointestinal tract and the nucleus tractus solitarii. Recently, several gastrointestinal hormones have been shown to transmit orexigenic or anorectic signals to the brain at least in part via the vagal afferent system. Indeed, blockade of the vagal afferent pathway abolishes ghrelin-induced feeding, indicating that the vagal afferent system is important to convey orexigenic ghrelin signals to the brain. In this chapter, we mention the role of the vagal afferent system for feeding regulation by gastrointestinal hormones and show the functional linkage in feeding between peripheral ghrelin and the vagal afferent system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott CR, Monteiro M, Small CJ et al (2005) The inhibitory effects of peripheral administration of peptide YY (3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044:127–131

    Article  CAS  PubMed  Google Scholar 

  • Adrian TE, Ferri GL, Bacarese-Hamilton AJ et al (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89:1070–1077

    CAS  PubMed  Google Scholar 

  • Agostoni E, Chinnock JE, de Daly MB et al (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135:182–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008

    Article  CAS  PubMed  Google Scholar 

  • Baatar D, Patel K, Taub DD (2011) The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 340:44–58

    Article  CAS  PubMed  Google Scholar 

  • Baggio LL, Huang Q, Brown TJ et al (2004) A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53:2492–2500

    Article  CAS  PubMed  Google Scholar 

  • Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654

    Article  CAS  PubMed  Google Scholar 

  • Böttcher G, Alumets J, HÃ¥kanson R et al (1986) Co-existence of glicentin and peptide YY in colorectal L-cells in cat and man. An electron microscopic study. Regul Pept 13:283–291

    Article  PubMed  Google Scholar 

  • Cooper E (1984) Synapse formation among developing sensory neurons from rat nodose ganglia grown in tissue culture. J Physiol 351:263–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Date Y, Kojima M, Hosoda H et al (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261

    CAS  PubMed  Google Scholar 

  • Date Y, Murakami N, Toshinai K et al (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Toshinai K, Koda S et al (2005) Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology 146:3518–3525

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Shimbara T, Koda S et al (2006) Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab 4:323–331

    Article  CAS  PubMed  Google Scholar 

  • Dockray GJ, Sharkey KA (1986) Neurochemistry of visceral afferent neurons. Prog Brain Res 67:133–148

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Sundler F (2002) Distribution of pancreatic polypeptide and peptide YY. Peptides 23:251–261

    Article  CAS  PubMed  Google Scholar 

  • Erlanson-Albertsson C, Lindqvist A (2008) Vagotomy and accompanying pyloroplasty down-regulates ghrelin mRNA but does not affect ghrelin secretion. Regul Pept 151:14–18

    Article  CAS  PubMed  Google Scholar 

  • Fry M, Ferguson AV (2010) Ghrelin: central nervous system sites of action in regulation of energy balance. Int J Pept 2010:1–8

    Article  Google Scholar 

  • Gagnon J, Anini Y (2012) Insulin and norepinephrine regulate ghrelin secretion from a rat primary stomach cell culture. Endocrinology 153:3646–3656

    Article  CAS  PubMed  Google Scholar 

  • Green T, Dockray GJ (1987) Calcitonin gene-related peptide and substance P in afferents to the upper gastrointestinal tract in the rat. Neurosci Lett 76:151–156

    Article  CAS  PubMed  Google Scholar 

  • Green T, Dimaline R, Dockray GJ (1989) Neuroendocrine control mechanisms of gastric emptying in the rat. In: Singer MV, Goebell H (eds) Nerves and the gastrointestinal tract. Kluwer, Netherlands, pp 433–446

    Google Scholar 

  • Greeley GHJ, Jeng YJ, Gomez G et al (1989) Evidence for regulation of peptide-YY release by the proximal gut. Endocrinology 124:1438–1443

    Article  CAS  PubMed  Google Scholar 

  • Grundy D, Scratcherd T (1989) Sensory afferents from the gastrointestinal tract. In: Schultz SG (ed) Handbook of physiology: the gastrointestinal system. Motility and circulation, vol. 1. Oxford University Press, New York, pp 593–620

    Google Scholar 

  • Hayes MR, De Jonghe BC, Kanoski SE (2010) Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol Behav 100:503–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439

    Article  CAS  PubMed  Google Scholar 

  • Kastin AJ, Akerstrom V, Pan W (2002) Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J Mol Neurosci 18:7–14

    Article  CAS  PubMed  Google Scholar 

  • Koda S, Date Y, Murakami N et al (2005) The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146:2369–2375

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a novel growth hormone releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  PubMed  Google Scholar 

  • Laviano A, Molfino A, Rianda S et al (2012) The growth hormone secretagogue receptor (Ghs-R). Curr Pharm Des 18:4749–4754

    Article  CAS  PubMed  Google Scholar 

  • Liddle RA, Green GM, Conrad CK et al (1986) Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol 251:G243–G248

    CAS  PubMed  Google Scholar 

  • Minokoshi Y, Alquier T, Furukawa N et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    Article  CAS  PubMed  Google Scholar 

  • Mondal MS, Date Y, Yamaguchi H et al (2005) Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept 126:55–59

    Article  CAS  PubMed  Google Scholar 

  • Moran TH, Smith GP, Hostetler AM et al (1987) Transport of cholecystokinin (CCK) binding sites in subdiaphragmatic vagal branches. Brain Res 415:149–152

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi H, Nishizawa M, Nakagawa A et al (1996) Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am J Physiol 271:E808–E813

    CAS  PubMed  Google Scholar 

  • Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  • Olszewski PK, Schiöth HB, Levine AS (2008) Ghrelin in the CNS: from hunger to a rewarding and memorable meal? Brain Res Rev 58:160–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poleni PE, Akieda-Asai S, Koda S et al (2012) Possible involvement of melanocortin-4-receptor and AMP-activated protein kinase in the interaction of glucagon-like peptide-1 and leptin on feeding in rats. Biochem Biophys Res Commun 420:36–41

    Article  CAS  PubMed  Google Scholar 

  • Raybould HE (1992) Vagal afferent innervation and the regulation of gastric motor function. In: Ritter S, Ritter RC, Barnes CD (eds) Neuroanatomy and physiology of abdominal vagal afferents. CRC press, Florida, pp 193–219

    Google Scholar 

  • Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265:663–679

    Article  CAS  PubMed  Google Scholar 

  • Shiiya T, Nakazato M, Mizuta M et al (2000) Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 87:240–244

    Article  Google Scholar 

  • Smith GP, Jerome C, Cushin BJ et al (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213:1036–1037

    Article  CAS  PubMed  Google Scholar 

  • Takiguchi S, Fujiwara Y, Yamasaki M et al (2013) Laparoscopy-assisted distal gastrectomy versus open distal gastrectomy. A prospective randomized single-blind study. World J Surg (in press)

    Google Scholar 

  • Tschöp M, Weyer C, Tataranni PA et al (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709

    Article  PubMed  Google Scholar 

  • Walsh JH (1987) Gastrointestinal hormones. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 181–253

    Google Scholar 

  • Want SA (1995) Cholecystokinin receptors. Am J Physiol 269:G628–G646

    Google Scholar 

  • Wren AM, Small CJ, Ward HL et al (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328

    Article  CAS  PubMed  Google Scholar 

  • Zarbin MA, Wamsley JK, Innis RB et al (1981) Cholecystokinin receptors: presence and axonal flow in the rat vagus nerve. Life Sci 29:697–705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Niijima, N. Murakami, M. Nakazato, and K. Kangawa for their technical advice and helpful discussions. This work was supported, in part, by grants-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Program for the Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Date .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Date, Y. (2014). The Vagus Nerve and Ghrelin Function. In: Portelli, J., Smolders, I. (eds) Central Functions of the Ghrelin Receptor. The Receptors, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0823-3_4

Download citation

Publish with us

Policies and ethics