Skip to main content

The Reality, Use and Potential for Cryopreservation of Coral Reefs

  • Chapter
  • First Online:
Reproductive Sciences in Animal Conservation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 753))

Abstract

Throughout the world coral reefs are being degraded at unprecedented rates. Locally, reefs are damaged by pollution, nutrient overload and sedimentation from out-dated land-use, fishing and mining practices. Globally, increased greenhouse gases are warming and acidifying oceans, making corals more susceptible to stress, bleaching and newly emerging diseases. The coupling of climate change impacts and local anthropogenic stressors has caused a widespread and well-recognized reef crisis. Although in situ conservation practices, such as the establishment and enforcement of marine protected areas, reduce these stressors and may help slow the loss of genetic diversity on reefs, the global effects of climate change will continue to cause population declines. Gamete cryopreservation has already acted as an effective insurance policy to maintain the genetic diversity of many wildlife species, but has only just begun to be explored for coral. Already we have had a great deal of success with cryopreserving sperm and larval cells from a variety of coral species. Building on this success, we have now begun to establish genetic banks using frozen samples, to help offset these threats to the Great Barrier Reef and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellwood DR, Hughes TP, Folke C, Nystrom M. Confronting the coral reef crisis. Nature. 2004;429:827–33.

    Article  CAS  PubMed  Google Scholar 

  • Bruckner AW. Proceedings of the Caribbean Acropora workshop: potential application of the U.S. endangered species act as a conservation strategy. Silver Spring, MD: NOAA Tech Memo NMFS-OPR-24; 2002. p. 1–23.

    Google Scholar 

  • Buddemeier RW, Ware JR, Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR. Coral reef decline in the Caribbean. Science. 2003;302:391–3.

    Article  CAS  PubMed  Google Scholar 

  • Cesar H, Burke L, Pet-Soede L. The economics of worldwide coral reef degradation. Arnhem, The Netherlands: Cesar Environmental Economics Consulting; 2003. p. 1–23.

    Google Scholar 

  • Combosch DJ, Vollmer SV. Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the Tropical Eastern Pacific. PLoS One. 2011;6(8):e21200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farrant J. Mechanism of cell damage during freezing and thawing and its prevention. Nature. 1965;205:1284–7.

    Article  CAS  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.

    Article  CAS  PubMed  Google Scholar 

  • Glynn PW, D’Croz L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs. 1990;8:181–91.

    Article  Google Scholar 

  • Glynn PW. Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol. 1996;2(6):495–509.

    Article  Google Scholar 

  • Goreau TJ, McClanahan T, Hayes RL, Strong AE. Conservation of coral reefs after the1998 global bleaching event. Conserv Biol. 2000;14:5–15.

    Article  Google Scholar 

  • Great Barrier Reef Marine Park Great Barrier Reef outlook report. http://www.gbrmpa.gov.au/outlook-for-the-reef/great-barrier-reef-outlook-report. (2009).

  • Hagedorn M, Kleinhans FW, Wildt DE, Rall WF. Chill sensitivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology. 1997;34(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Carter VL, Steyn RA, Krupp D, Leong J, Lang RP, Tiersch TR. Preliminary studies of sperm cryopreservation in the mushroom coral, Fungia scutaria. Cryobiology. 2006a;52(3):454–8.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Pan R, Cox E, Hollingsworth L, Lewis TD, Leong JC, Krupp DA, Mazur P, Rall WF, MacFarlane D, Fahy G, Kleinhans FW. Coral larvae conservation: physiology and reproduction. Cryobiology. 2006b;52:33–47.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Carter VL, Leong JC, Kleinhans FW. Physiology and cryosensitivity of coral symbiotic algae (Symbiodinium sp.). Cryobiology. 2010;60:147–58.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Carter VL, Martorana K, Paresa MK, Acker J, Baums IB, Borneman EH, Brittsan M, Byers M, Henley M, Laterveer M, Leong JC, McCarthy M, Meyers S, Nelson BD, Petersen D, Tiersch T, Cuevas Uribe R, Wildt D. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One. 2012;7(3):e33354. doi:10.1371/journal.pone.0033354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammerstedt RH, Graham JK, Nolan JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl. 1990;111(1):73–88.

    Google Scholar 

  • Harrington LM, Fabricius K, Dea’th G, Negri AP. Habitat selection of settlement substrata determines post-settlement survival in corals. Ecology. 2004;85:3428–37.

    Article  Google Scholar 

  • He L, Bailey JL, Buhr MM. Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol Reprod. 2001;64(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  • Heyward AJ, Negri AP. Natural inducers for coral larval metamorphosis. Coral Reefs. 1999;18:273–9.

    Article  Google Scholar 

  • Heyward AJ, Negri AP. Turbulence, cleavage, and the naked embryo: a case for coral clones. Science. 2012;335(6072):1064.

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301(5635):929–33.

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Zhang T, Kuo FW, Tsai S. Gorgonian coral (Junceella juncea and Junceella fragilis) oocyte chilling sensitivity in the context of adenosine triphosphate response (ATP). Cryo Letters. 2011;32(2):141–7.

    CAS  PubMed  Google Scholar 

  • Lin C, Wang L-H, Fan T-Y, Kuo F-W. Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. PLoS One. 2012;7(7):e38689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin RL, Miller TW. An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells. Cryobiology. 1981;18:32–48.

    Article  CAS  PubMed  Google Scholar 

  • Mazur P. Cryobiology: the freezing of biological systems. Science. 1970;168(934):939–49.

    Article  CAS  PubMed  Google Scholar 

  • Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol. 1984;247(3 Pt 1):C125–42.

    CAS  PubMed  Google Scholar 

  • Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999;29:215–33.

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJ, Paredes G, Warner RR, Jackson JB. Global trajectories of the long-term decline of coral reef ecosystems. Science. 2003;301(5635):955–8.

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011;22:418–22.

    Article  Google Scholar 

  • Pegg DE, Wang L, Vaughan D. Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method. Cryobiology. 2006;52(3):360–8.

    Article  CAS  PubMed  Google Scholar 

  • Rall WF. Advances in the cryopreservation of embryos and prospects for the application to the conservation of salmonid fishes. In: Thorgaard GH, Cloud JG, editors. Genetic conservation of salmonid fishes. New York, NY: Plenum Press; 1993. p. 137–58.

    Chapter  Google Scholar 

  • Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature. 1985;313:573–5.

    Article  CAS  PubMed  Google Scholar 

  • Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJA, Paul VJ. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci. 2009;38:437–57.

    Article  Google Scholar 

  • Taylor R, Adams GD, Boardman CF, Wallis RG. Cryoprotection—permeant vs. nonpermeant additives. Cryobiology. 1974;11(5):430–8.

    Article  CAS  PubMed  Google Scholar 

  • Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP, Blackall LL, Steinberg PD, Harder T. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS One. 2011;6(4):e19082.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shearer TL, Porto I, Zubillaga AL. Restoration of coral populations in light of genetic diversity estimates. Coral Reefs. 2009;28(3):727–33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wildt DE, Comizzoli P, Pukazhenthi B, Songsasen N. Lessons from biodiversity—the value of nontraditional species to advance reproductive science, conservation, and human health. Mol Reprod Dev. 2010;77(397–409):2010.

    Google Scholar 

  • Wolf KN, Wildt DE, Vargas A, Marinari PE, Ottinger MA, Howard JG. Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biol. 2001;19:517–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Hagedorn Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hagedorn, M., Spindler, R. (2014). The Reality, Use and Potential for Cryopreservation of Coral Reefs. In: Holt, W., Brown, J., Comizzoli, P. (eds) Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology, vol 753. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0820-2_13

Download citation

Publish with us

Policies and ethics