Skip to main content

General Traffic Equilibrium Problem with Uncertainty and Random Variational Inequalities

Abstract

In the paper we study, in a Hilbert space setting, a general random traffic equilibrium problem. For this problem we give a random generalized Wardrop equilibrium condition and we characterize an equilibrium distribution by means of a variational inequality. Finally some existence results are provided.

Keywords

  • Traffic Network Problems
  • Random Variational Inequalities
  • Hilbert Space Setting
  • Path Flow Vector
  • Generalized Complementarity Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0808-0_4
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0808-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. Brezis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Annales de l’Institut Fourier 18, 115–175 (1968)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Daniele, P., Maugeri, A., Oettli, W.: Time-dependent traffic equilibria. J. Optim. Theory Appl. 103(3), 543–555 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Evstigneev, I.V., Taksar, M.I.: Equilibrium states of random economies with locally interacting agents and solutions to stochastic variational inequalities in \(\langle L_{1},L_{\infty }\rangle\). Ann. Oper. Res. 114, 145–165(2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Ganguly, A., Wadhwa, K.: On random variational inequalities. J. Math. Anal. Appl. 206, 315–321 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Gwinner, J., Raciti, F.: On a class of random variational inequalities on random sets. Numer. Funct. Anal. Optim. 27(56), 619-636 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Gwinner, J., Raciti, F.: Random equilibrium problems on networks. Math. Comput. Model. 43(7–8), 880–891 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Gwinner, J., Raciti, F.: Some equilibrium problems under uncertainty and random variational inequalities. Ann. Oper. Res. 200(1), 299–319 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Maugeri, A., Raciti, F.: On general infinite dimensional complementarity problems. Optim. Lett. 2, 71–90 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Maugeri, A., Raciti, F.: On existence theorems for monotone and nonmonotone variational inequalities. J. Convex Anal. 16, 899–911 (2009)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Daniele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daniele, P., Giuffrè, S., Maugeri, A. (2014). General Traffic Equilibrium Problem with Uncertainty and Random Variational Inequalities. In: Rassias, T., Floudas, C., Butenko, S. (eds) Optimization in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0808-0_4

Download citation