Advertisement

Influence Diffusion in Social Networks

  • Wen Xu
  • Weili Wu
  • Lidan Fan
  • Zaixin Lu
  • Ding-Zhu Du
Chapter

Abstract

Recently influence diffusion in social networks has become a hot topic in research communities. In this paper, we outline the techniques used in optimizing or facilitating information diffusion in social networks. We begin with an overview of social networks identifying its significance and characteristics. Then among various problems that are related to diffusion of information in social networks, we study the two fundamental problems using multi-scale analysis, namely (a) maximizing the influence spread and (b) minimizing the spread of misinformation in social networks. Research trends of this topic are also detected and discussed.

Keywords

Social Network Influence Maximization Linear Threshold Strongly Connected Component Independent Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hughes, A.L., Palen, L.: Twitter adoption and use in mass convergence and emergency events. In: Proceedings of the 6th International Information Systems for Crisis Response and Management Conference (2009)Google Scholar
  2. 2.
    Grossman, L.: Iran protests: Twitter, the medium of the movement. Time (online) (June 2009). http://www.time.com/time/world/article/0,8599,1905125,00.html
  3. 3.
    Smith, C.: Egypt’s facebook revolution: Wael ghonim thanks the social network. The Huffington Post, February 2011. http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html
  4. 4.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), Cambridge, August 1999Google Scholar
  5. 5.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. Comput. Netw. 31, 1481–1493 (1999)CrossRefGoogle Scholar
  7. 7.
    Adamic, L.A., Buyukkokten, O., Adar, E.: A social network caught in the Web. First Monday 8(6), 35–42 (2003)CrossRefGoogle Scholar
  8. 8.
    Braitenberg, V., Schüz, A.: Anatomy of a Cortex: Statistics and Geometry. Springer, Berlin (1991)CrossRefGoogle Scholar
  9. 9.
    Phadke, A.G., Thorp, J.S.: Computer relaying for power systems. Wiley, New York (1988)Google Scholar
  10. 10.
    Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definitions, properties, and implications. Internet Math. 2(4), 431–523 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Albert, R., Jeong, H., Barabasi, A.L.: The diameter of the world wide web. Nature 401, 130 (1999)CrossRefGoogle Scholar
  12. 12.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web: Experiments and models. In: Proceedings of the 9th International World Wide Web Conference (WWW), Amsterdam, May 2000Google Scholar
  13. 13.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. (PNAS) 98, 409–415 (2001)Google Scholar
  14. 14.
    Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. (PNAS) 97, 11149–11152 (2000)Google Scholar
  15. 15.
    Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC), Portland, May 2000Google Scholar
  16. 16.
    Kleinberg, J.: Navigation in a small world. Nature 406, 845–845 (2000)CrossRefGoogle Scholar
  17. 17.
    Milgram, S.: The small world problem. Psychol. Today, 2(60), 60–67 (1967)Google Scholar
  18. 18.
    Pool, I., Kochen, M.: Contacts and influence. Soc. Netw. 1, 1–48 (1978)Google Scholar
  19. 19.
    Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  20. 20.
    Wasserman, S., Faust, K.: Social Networks Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  21. 21.
    Siganos, G., Tauro, S.L., Faloutsos, M.: Jellyfish: A conceptual model for the AS internet topology. J. Commun. Netw. 8(3), 339–350 (2006)CrossRefGoogle Scholar
  22. 22.
    Kleinberg, J., Lawrence, S.: The structure of the web. Science 294, 1849–1850 (2001)CrossRefGoogle Scholar
  23. 23.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Stanford University (1998)Google Scholar
  25. 25.
    Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. Proc. Natl. Acad. Sci. (PNAS) 102(33), 11623–11628 (2005)Google Scholar
  26. 26.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Philadelphia, August 2006Google Scholar
  27. 27.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. (PNAS) 99, 7821–7826 (2002)Google Scholar
  28. 28.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Philadelphia, August 2006Google Scholar
  29. 29.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRefGoogle Scholar
  30. 30.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)Google Scholar
  31. 31.
    Schumpeter, J., Bakhays, U.: The Theory of Economics Development. Springer, New York (2003)Google Scholar
  32. 32.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Westermana, D., Spenceb, P.R., Heide, B.V.D.: A social network as information: The effect of system generated reports of connectedness on credibility on twitter. Comput. Hum. Behav. 28(1), 199–206 (2012)CrossRefGoogle Scholar
  34. 34.
    Lopez-Pintado, D.: Diffusion in complex social networks. Games Econ. Behav. 62(2), 573–590 (2008)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Meier, D., Oswald, Y.A., Schmid, S., Wattenhofer, R.: On the windfall of friendship: Inoculation strategies on social networks. In: ICEC, pp. 294–301 (2008)Google Scholar
  36. 36.
    Salathé, M., Jones, J.H.: Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6(8), e1000736 (2010). doi:10.1371/journal.pcbi.1000736CrossRefGoogle Scholar
  37. 37.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the 7th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)Google Scholar
  38. 38.
    Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedingsof the 9th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  39. 39.
    Kempe, D., Kleinberg, J., Tardos, E.: Influential nodes in a diffusion model for social networks. In: ICALP, pp. 1127–1138. Springer, New York (2005)Google Scholar
  40. 40.
    Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC), p. 128 (2007)Google Scholar
  41. 41.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Lu, Z., Zhang, W., Wu, W., Kim, J., Fu, B.: The complexity of influence maximization problem in the deterministic linear threshold model. J. Comb. Optim. 24(3), 374–378 (2012)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’11), pp. 529–537, New York, USA (2011)Google Scholar
  44. 44.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’10), pp. 1029-1038, New York, USA (2010)Google Scholar
  45. 45.
    Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM’10), pp. 88–97 (2010)Google Scholar
  46. 46.
    Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 259–271 (2006)Google Scholar
  47. 47.
    Saito, K., et al.: Prediction of information diffusion probabilities for independent cascade model. In: Knowledge-Based Intelligent Information and Engineering Systems (KES’08), Lecture Notes in Computer Science, 5179, 67–75 (2008)CrossRefGoogle Scholar
  48. 48.
    Goyal, A., Lu, W., Lakshmanan, L.V.S.: A data-based approach to social influence maximization. In: PVLDB 5(1), 73–84 (2011)Google Scholar
  49. 49.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of the third ACM international conference on Web search and data mining (WSDM’10), pp. 241–250, New York, USA (2010)Google Scholar
  50. 50.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van-Briesen, J., Glance, N.S.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 420–429 (2007)Google Scholar
  51. 51.
    Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social networks. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’10), pp. 1059–1068, New York, USA (2010)Google Scholar
  52. 52.
    Carnes, T., Nagarajan, C., Wild, S.M., van Zuylen, A.: Maximizing influence in a competitive social network: A follower’s perspective. In: Proceedings of the 9th International Conference on Electronic Commerce (ICEC) (2007)Google Scholar
  53. 53.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Proceedings of the 3rd international conference on Internet and network economics (WINE’07), 4858, 306–311 (2007)Google Scholar
  54. 54.
    Kostka, J., Oswald, Y.A., Wattenhofer, R.: Word of mouth: Rumor dissemination in social networks. In: Structural Information and Communication Complexity (SIROCCO’08), Lecture Notes in Computer Science, 5058, 185–196 (2008)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Trpevski, D., Tang, W.K.S., Kocarev, L.: Model for rumor spreading over networks. Phys. Rev. E, 81(5), 056102 (2010)CrossRefGoogle Scholar
  56. 56.
    Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Proceedings of the 6th international conference on Internet and network economics (WINE’10), pp. 539–550 (2010)Google Scholar
  57. 57.
    Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincn, D., Sun, X., Wang, Y., Wei, W., Yuan, Y.: Influence maximization in social networks when negative opinions may emerge and propagate. In: SIAM Data Mining (SDM), pp. 379–390 (2011)Google Scholar
  58. 58.
    Dubey, P., Garg, R., Meyer, B.D.: Competing for customers in a social network: The quasi-linear case. Internet Netw. Econ. 4286, 162–173 (2006)CrossRefGoogle Scholar
  59. 59.
    Morozov, E.: Swine flu. Twitter’s power to misinform. Foreign Policy, April 2009. http://neteffect.foreignpolicy.com/posts/2009/04/25/swine_flu_twitters_power_to_misinform
  60. 60.
    Heussner, K.M.: Enough already! 7 twitter hoaxes and half-truths. ABC News (January 2010)Google Scholar
  61. 61.
    Fan, L., Lu Z., Wu W., Thuraisingham B., Ma H., and Bi Y.: Least Cost Rumor Blocking in Social Networks. In: Proceedings of the 33rd Internaltional Conference on Distributed Computing Systems (ICDCS), pp. 540–549 (2013)Google Scholar
  62. 62.
    Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (2008)Google Scholar
  63. 63.
    Budak, C., Agrawal, D., Abbadi, A.E.: Limiting the spread of misinformation in social networks. In: International World Wide Web Conference (WWW’11), March 28–April 1, Hyderabad, India, pp. 665–674 (2011)Google Scholar
  64. 64.
    He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. In: SIAM Data Mining (SDM), pp. 463–474 (2012)Google Scholar
  65. 65.
    Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of Misinformation Spread in Online Social Networks. In: Proceedings of the 3rd Annual ACM Web Science Conference (WebSci’12), pp. 213–222, ACM New york, USA (2012)Google Scholar
  66. 66.
    C. for Computational Analysis of Social and O. S. (CASOS). Casos networks. http://www.casos.cs.cmu.edu/computational_tools/data2.php (2005)
  67. 67.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? http://an.kaist.ac.kr/traces/WWW2010.html (2010)
  68. 68.
    Leskovec, J.: Stanford large network dataset collection. http://snap.stanford.edu/data/index.html (2009)
  69. 69.
    Newman, M.: Network data. http://www-personal.umich.edu/~mejn/netdata/ (2013)
  70. 70.
    Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: Scalable online collaborative filtering. In: Proceeding of the 16th International Conference on World Wide Web (WWW) (2007)Google Scholar
  71. 71.
    Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. In: Proceedings of the 18th Neural Information Processing Systems (NIPS) (2006)Google Scholar
  72. 72.
    Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 194–281. MIT Press/Bradford Books, Cambridge (1986)Google Scholar
  73. 73.
    Kschischang, F.R., Member, S., Frey, B.J., Andrea Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)CrossRefMATHGoogle Scholar
  74. 74.
    Welling, M., Hinton, G.E.: A new learning algorithm for mean field boltzmann machines. In: Proceedings of International Conference on Artificial Neural Network (ICANN), pp. 351–357 (2001)Google Scholar
  75. 75.
    Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD (2009)Google Scholar
  76. 76.
    Yan, Q., Guo, S., Yang, D.: Influence maximizing and local influenced community detection based on multiple spread model. In: Advanced Data Mining and Applications (ADMA’11), Part II, LNAI 7121, pp. 82–95, (2011).Google Scholar
  77. 77.
    Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in online communities. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 160–168 (2008)Google Scholar
  78. 78.
    Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H.: Learning diffusion probability based on node attributes in social networks. In: ISMIS, pp. 153–162 (2011)Google Scholar
  79. 79.
    Rodriguez, M.G., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. In: ICML, pp. 561–568 (2011)Google Scholar
  80. 80.
    Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 21–30 (2011)Google Scholar
  81. 81.
    Fountoulakis, N., Panagiotouy, K., Sauerwaldz, T.: Ultra-fast rumor spreading in social networks. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1642–1660 (2012)Google Scholar
  82. 82.
    Chen, W., Lu, W., Zhang, N.: Time-critical influence maximization in social networks with time-delayed diffusion process. In: AAAI, pp. 1–5 (2012)Google Scholar
  83. 83.
    Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In: IEEE International Conference on Data Mining (ICDM), December 2012Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wen Xu
    • 1
  • Weili Wu
    • 1
  • Lidan Fan
    • 1
  • Zaixin Lu
    • 1
  • Ding-Zhu Du
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations