Novel Treatments and the Future of Diabetic Nephropathy: What Is on the Horizon?

Chapter

Abstract

As diabetes and diabetic nephropathy have reached epidemic proportions across the world, there has been rapid expansion in our knowledge on immunopathogenesis, epigenetic mechanisms, and identification of an increasing number of novel therapeutic targets. Laboratory experiments or trials are under way exploring the effects of biologicals, stem cell/progenitor cell therapies, and newer medications in diabetic and pre-diabetic cohorts identified through the help of recently characterized biomarkers of early disease. Simultaneously, spectacular advances in technology, including cell and organ regeneration, and three-dimensional printing that has accomplished the feat of successfully generating a kidney are likely to offer hitherto unimagined additional therapy options to patients with diabetes and diabetic nephropathy. These advances clearly point to a future in diabetes and diabetic kidney disease with greatly expanded therapy options. Yet the vast majority of the increase in hundreds of millions of patients with diabetes and diabetes associated organ failure, including nephropathy is doubtless closely related to the unhealthy modern lifestyle, which engenders obesity and heightened inflammatory state that facilitates multiple metabolic abnormalities including diabetes and frank islet cell destruction. Clearly, the most cost-effective future therapy for this epidemic must include innovative global programs to reverse this trend and achieve wide acceptance of healthy diet and lifestyle changes across the world. The purpose of this chapter is to briefly review the recent advances in diabetes research and the future implications of this rapidly expanding knowledge on the lives of patients with diabetes and diabetic kidney disease.

Keywords

Obesity Angiotensin Proteinuria Tacrolimus Hyperglycemia 

References

  1. 1.
    Tonjes A, Kovacs P. SGLT2: a potential target for the pharmacogenetics of type 2 diabetes? Pharmacogenomics. 2013;14(7):825–33.PubMedGoogle Scholar
  2. 2.
    Raskin P. Sodium-glucose cotransporter inhibition: therapeutic potential for the treatment of type 2 diabetes mellitus. Diabetes Metab Res Rev. 2013;29(5):347–56.PubMedGoogle Scholar
  3. 3.
    Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells–renoprotection in diabetic nephropathy? PLoS One. 2013;8(2):e54442.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mikhail N. Use of dipeptidyl peptidase-4 inhibitors for the treatment of patients with type 2 diabetes mellitus and chronic kidney disease. Postgrad Med. 2012;124(4):138–44.PubMedGoogle Scholar
  5. 5.
    Andrianesis V, Doupis J. The role of kidney in glucose homeostasis—SGLT2 inhibitors, a new approach in diabetes treatment. Expert Rev Clin Pharmacol. 2013;6:519–39.PubMedGoogle Scholar
  6. 6.
    Komala MG, Panchapakesan U, Pollock C, Mather A. Sodium glucose cotransporter 2 and the diabetic kidney. Curr Opin Nephrol Hypertens. 2013;22(1):113–9.PubMedGoogle Scholar
  7. 7.
    Whaley JM, Tirmenstein M, Reilly TP, Poucher SM, Saye J, Parikh S, et al. Targeting the kidney and glucose excretion with dapagliflozin: preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2012;5:135–48.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation. 2014;129:587–97.PubMedGoogle Scholar
  9. 9.
    Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012;2(3):a007724.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. 1974;2(7892):1279–83.PubMedGoogle Scholar
  11. 11.
    Skyler JS. Immune intervention for type 1 diabetes mellitus. Int J Clin Pract Suppl. 2011;170:61–70.PubMedGoogle Scholar
  12. 12.
    Marini MA, Succurro E, Frontoni S, Mastroianni S, Arturi F, Sciacqua A, et al. Insulin sensitivity, beta-cell function, and incretin effect in individuals with elevated 1-hour postload plasma glucose levels. Diabetes Care. 2012;35(4):868–72.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Nakayama M, Eisenbarth GS. Paradigm shift or shifting paradigm for type 1 diabetes. Diabetes. 2012;61(5):976–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet. 2013;381(9881):1905–15.PubMedGoogle Scholar
  15. 15.
    Skyler JS. The year in immune intervention for type 1 diabetes. Diabetes Technol Ther. 2013;15 Suppl 1:S88–95.PubMedGoogle Scholar
  16. 16.
    Pescovitz MD, Greenbaum CJ, Bundy B, Becker DJ, Gitelman SE, Goland R, et al. B-lymphocyte depletion with rituximab and beta-cell function: two-year results. Diabetes Care. 2014;37:453–9.PubMedGoogle Scholar
  17. 17.
    Pozzilli P, Guglielmi C. Double diabetes: a mixture of type 1 and type 2 diabetes in youth. Endocr Dev. 2009;14:151–66.PubMedGoogle Scholar
  18. 18.
    Roell MK, Issafras H, Bauer RJ, Michelson KS, Mendoza N, Vanegas SI, et al. Kinetic approach to pathway attenuation using XOMA 052, a regulatory therapeutic antibody that modulates interleukin-1beta activity. J Biol Chem. 2010;285(27):20607–14.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Owyang AM, Maedler K, Gross L, Yin J, Esposito L, Shu L, et al. XOMA 052, an anti-IL-1{beta} monoclonal antibody, improves glucose control and {beta}-cell function in the diet-induced obesity mouse model. Endocrinology. 2010;151(6):2515–27.PubMedGoogle Scholar
  20. 20.
    Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J, et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation. 2012;126(23):2739–48.PubMedGoogle Scholar
  21. 21.
    Sumpter KM, Adhikari S, Grishman EK, White PC. Preliminary studies related to anti-interleukin-1beta therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes. 2011;12(7):656–67.PubMedGoogle Scholar
  22. 22.
    Skyler JS. Primary and secondary prevention of type 1 diabetes. Diabet Med. 2013;30(2):161–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776–84.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–7.PubMedGoogle Scholar
  25. 25.
    Ziyadeh FN. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol. 2004;15 Suppl 1:S55–7.PubMedGoogle Scholar
  26. 26.
    Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, et al. Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013;62(9):3151–62.PubMedGoogle Scholar
  27. 27.
    Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol. 2013;4:7.Google Scholar
  28. 28.
    Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev. 2008;4(1):39–45.PubMedGoogle Scholar
  29. 29.
    Cheng X, Gao W, Dang Y, Liu X, Li Y, Peng X, et al. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J Diabetes Res. 2013;2013:463740.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Jang HR, Lee YJ, Kim SR, Kim SG, Jang EH, Lee JE, et al. Potential role of urinary angiotensinogen in predicting antiproteinuric effects of angiotensin receptor blocker in non-diabetic chronic kidney disease patients: a preliminary report. Postgrad Med J. 2012;88(1038):210–6.PubMedGoogle Scholar
  31. 31.
    Mills KT, Kobori H, Hamm LL, Alper AB, Khan IE, Rahman M, et al. Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease. Nephrol Dial Transplant. 2012;27(8):3176–81.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Park S, Bivona BJ, Kobori H, Seth DM, Chappell MC, Lazartigues E, et al. Major role for ACE-independent intrarenal ANG II formation in type II diabetes. Am J Physiol Renal Physiol. 2010;298(1):F37–48.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Thethi T, Kamiyama M, Kobori H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep. 2012;14(2):160–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kobori H, Kamiyama M, Harrison-Bernard LM, Navar LG. Cardinal role of the intrarenal renin-angiotensin system in the pathogenesis of diabetic nephropathy. J Investig Med. 2013;61(2):256–64.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ritz E. Limitations and future treatment options in type 2 diabetes with renal impairment. Diabetes Care. 2011;34 Suppl 2:S330–4.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75.PubMedGoogle Scholar
  37. 37.
    Romagnani P, Remuzzi G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab. 2013;24(1):13–20.PubMedGoogle Scholar
  38. 38.
    Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Oh BJ, Oh SH, Jin SM, Suh S, Bae JC, Park CG, et al. Co-transplantation of bone marrow-derived endothelial progenitor cells improves revascularization and organization in islet grafts. Am J Transplant. 2013;13(6):1429–40.PubMedGoogle Scholar
  40. 40.
    Steiner S, Winkelmayer WC, Kleinert J, Grisar J, Seidinger D, Kopp CW, et al. Endothelial progenitor cells in kidney transplant recipients. Transplantation. 2006;81(4):599–606.PubMedGoogle Scholar
  41. 41.
    Nakhoul N, Batuman V. Role of proximal tubules in the pathogenesis of kidney disease. Contribut Nephrol. 2011;169:37–50.Google Scholar
  42. 42.
    Hassan SB, Hanna MO. Urinary kappa and lambda immunoglobulin light chains in normoalbuminuric type 2 diabetes mellitus patients. J Clin Lab Anal. 2011;25(4):229–32.PubMedGoogle Scholar
  43. 43.
    Hutchison CA, Cockwell P, Harding S, Mead GP, Bradwell AR, Barnett AH. Quantitative assessment of serum and urinary polyclonal free light chains in patients with type II diabetes: an early marker of diabetic kidney disease? Expert Opin Ther Targets. 2008;12(6):667–76.PubMedGoogle Scholar
  44. 44.
    Groop L, Makipernaa A, Stenman S, DeFronzo RA, Teppo AM. Urinary excretion of kappa light chains in patients with diabetes mellitus. Kidney Int. 1990;37(4):1120–5.PubMedGoogle Scholar
  45. 45.
    Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.PubMedGoogle Scholar
  46. 46.
    Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.PubMedGoogle Scholar
  47. 47.
    Cummins TD, Barati MT, Coventry SC, Salyer SA, Klein JB, Powell DW. Quantitative mass spectrometry of diabetic kidney tubules identifies GRAP as a novel regulator of TGF-beta signaling. Biochim Biophys Acta. 2010;1804(4):653–61.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Diao WF, Chen WQ, Wu Y, Liu P, Xie XL, Li S, et al. Serum, liver, and kidney proteomic analysis for the alloxan-induced type I diabetic mice after insulin gene transfer of naked plasmid through electroporation. Proteomics. 2006;6(21):5837–45.PubMedGoogle Scholar
  49. 49.
    Folli F, Guzzi V, Perego L, Coletta DK, Finzi G, Placidi C, et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney-pancreas transplantation. PLoS One. 2010;5(3):e9923.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Manwaring V, Heywood WE, Clayton R, Lachmann RH, Keutzer J, Hindmarsh P, et al. The identification of new biomarkers for identifying and monitoring kidney disease and their translation into a rapid mass spectrometry-based test: evidence of presymptomatic kidney disease in pediatric Fabry and type-I diabetic patients. J Proteome Res. 2013;12(5):2013–21.PubMedGoogle Scholar
  51. 51.
    Bouhanick B, Gallois Y, Hadjadj S, Boux de Casson F, Limal JM, Marre M. Relationship between glomerular hyperfiltration and ACE insertion/deletion polymorphism in type 1 diabetic children and adolescents. Diabetes Care. 1999;22(4):618–22.PubMedGoogle Scholar
  52. 52.
    Kimura H, Gejyo F, Suzuki Y, Suzuki S, Miyazaki R, Arakawa M. Polymorphisms of angiotensin converting enzyme and plasminogen activator inhibitor-1 genes in diabetes and macroangiopathy1. Kidney Int. 1998;54(5):1659–69.PubMedGoogle Scholar
  53. 53.
    Marre M, Bouhanick B, Berrut G, Gallois Y, Le Jeune JJ, Chatellier G, et al. Renal changes on hyperglycemia and angiotensin-converting enzyme in type 1 diabetes. Hypertension. 1999;33(3):775–80.PubMedGoogle Scholar
  54. 54.
    Weekers L, Bouhanick B, Hadjadj S, Gallois Y, Roussel R, Pean F, et al. Modulation of the renal response to ACE inhibition by ACE insertion/deletion polymorphism during hyperglycemia in normotensive, normoalbuminuric type 1 diabetic patients. Diabetes. 2005;54(10):2961–7.PubMedGoogle Scholar
  55. 55.
    Yu ZY, Chen LS, Zhang LC, Zhou TB. Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic nephropathy. Nephrology (Carlton). 2012;17(5):480–7.Google Scholar
  56. 56.
    Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol. 2008;3(5):1511–25.PubMedGoogle Scholar
  57. 57.
    Krolewski AS, Poznik GD, Placha G, Canani L, Dunn J, Walker W, et al. A genome-wide linkage scan for genes controlling variation in urinary albumin excretion in type II diabetes. Kidney Int. 2006;69(1):129–36.PubMedGoogle Scholar
  58. 58.
    Ng DP, Krolewski AS. Molecular genetic approaches for studying the etiology of diabetic nephropathy. Curr Mol Med. 2005;5(5):509–25.PubMedGoogle Scholar
  59. 59.
    Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Thomas MC, Groop PH, Tryggvason K. Towards understanding the inherited susceptibility for nephropathy in diabetes. Curr Opin Nephrol Hypertens. 2012;21(2):195–202.PubMedGoogle Scholar
  61. 61.
    Seki Y, Williams L, Vuguin PM, Charron MJ. Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology. 2012;153(3):1031–8.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Reddy MA, Natarajan R. Epigenetics in diabetic kidney disease. J Am Soc Nephrol. 2011;22(12):2182–5.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19(11):1496–504.PubMedGoogle Scholar
  64. 64.
    Villeneuve LM, Reddy MA, Natarajan R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol. 2011;38(7):451–9.PubMedGoogle Scholar
  65. 65.
    Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol. 2010;299(1):F14–25.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Tyagi AC, Sen U, Mishra PK. Synergy of microRNA and stem cell: a novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Curr Diabetes Rev. 2011;7(6):367–76.PubMedGoogle Scholar
  67. 67.
    Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia. 2013;56(3):444–56.PubMedGoogle Scholar
  68. 68.
    Alvarez ML, Khosroheidari M, Eddy E, Kiefer J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One. 2013;8(10):e77468.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ. Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology. 2013;154(2):603–8.PubMedGoogle Scholar
  70. 70.
    Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663–74.PubMedGoogle Scholar
  71. 71.
    Lin X, Tao L, Tang D. Gene therapy, a targeted treatment for diabetic nephropathy. Curr Med Chem. 2013;20(30):3774–84.PubMedGoogle Scholar
  72. 72.
    Flaquer M, Franquesa M, Vidal A, Bolanos N, Torras J, Lloberas N, et al. Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia. 2012;55(7):2059–68.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang Y, Zhang Y, Bone RN, Cui W, Peng JB, Siegal GP, et al. Regeneration of pancreatic non-beta endocrine cells in adult mice following a single diabetes-inducing dose of streptozotocin. PLoS One. 2012;7(5):e36675.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Bone RN, Icyuz M, Zhang Y, Zhang Y, Cui W, Wang H, et al. Gene transfer of active Akt1 by an infectivity-enhanced adenovirus impacts beta-cell survival and proliferation differentially in vitro and in vivo. Islets. 2012;4(6):366–78.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Sugiyama T, Benitez CM, Ghodasara A, Liu L, McLean GW, Lee J, et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci U S A. 2013;110(31):12691–6.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Chen S, Shimoda M, Wang MY, Ding J, Noguchi H, Matsumoto S, et al. Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy. Gene Ther. 2010;17(11):1411–20.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang Y, Ye C, Wang G, Gao Y, Tan K, Zhuo Z, et al. Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats. Biomed Res Int. 2013;2013:526367.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Liu S, Kilic G, Meyers MS, Navarro G, Wang Y, Oberholzer J, et al. Oestrogens improve human pancreatic islet transplantation in a mouse model of insulin deficient diabetes. Diabetologia. 2013;56(2):370–81.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Tiano J, Mauvais-Jarvis F. Selective estrogen receptor modulation in pancreatic beta-cells and the prevention of type 2 diabetes. Islets. 2012;4(2):173–6.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Tiano JP, Delghingaro-Augusto V, Le May C, Liu S, Kaw MK, Khuder SS, et al. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest. 2011;121(8):3331–42.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Jacobs-Tulleneers-Thevissen D, Chintinne M, Ling Z, Gillard P, Schoonjans L, Delvaux G, et al. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia. 2013;56(7):1605–14.PubMedGoogle Scholar
  82. 82.
    Jaroch DB, Lu J, Madangopal R, Stull ND, Stensberg M, Shi J, et al. Mouse and human islets survive and function after coating by biosilicification. Am J Physiol Endocrinol Metab. 2013;305(10):E1230–40.PubMedGoogle Scholar
  83. 83.
    Kakabadze Z, Gupta S, Pileggi A, Molano RD, Ricordi C, Shatirishvili G, et al. Correction of diabetes mellitus by transplanting minimal mass of syngeneic islets into vascularized small intestinal segment. Am J Transplant. 2013;13(10):2550–7.PubMedGoogle Scholar
  84. 84.
    Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19(11):2065–71.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Takita M, Matsumoto S, Shimoda M, Chujo D, Itoh T, Sorelle JA, et al. Safety and tolerability of the T-cell depletion protocol coupled with anakinra and etanercept for clinical islet cell transplantation. Clin Transplant. 2012;26(5):E471–84.PubMedGoogle Scholar
  86. 86.
    Cooper DK. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012;25(1):49–57.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Reemtsma K. Xenotransplantation: a historical perspective. ILAR J. 1995;37(1):9–12.PubMedGoogle Scholar
  88. 88.
    Deschamps JY, Roux FA, Sai P, Gouin E. History of xenotransplantation. Xenotransplantation. 2005;12(2):91–109.PubMedGoogle Scholar
  89. 89.
    O’Connell PJ, Cowan PJ, Hawthorne WJ, Yi S, Lew AM. Transplantation of xenogeneic islets: are we there yet? Curr Diab Rep. 2013;13(5):687–94.PubMedGoogle Scholar
  90. 90.
    Nagaraju S, Bottino R, Wijkstrom M, Hara H, Trucco M, Cooper DK. Islet xenotransplantation from genetically engineered pigs. Curr Opin Organ Transplant. 2013;18(6):695–702.PubMedGoogle Scholar
  91. 91.
    Ashkenazi E, Baranovski BM, Shahaf G, Lewis EC. Pancreatic islet xenograft survival in mice is extended by a combination of alpha-1-antitrypsin and single-dose anti-CD4/CD8 therapy. PLoS One. 2013;8(5):e63625.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Picher MM, Kupcu S, Huang CJ, Dostalek J, Pum D, Sleytr UB, et al. Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip. Lab Chip. 2013;13(9):1780–9.PubMedGoogle Scholar
  93. 93.
    Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, et al. Fully integrated biochip platforms for advanced healthcare. Sensors (Basel). 2012;12(8):11013–60.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Yu Y, Zhang Y, Martin JA, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng. 2013;135(9):91011.PubMedGoogle Scholar
  95. 95.
    Soman P, Chung PH, Zhang AP, Chen S. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng. 2013;110(11):3038–47.PubMedGoogle Scholar
  96. 96.
    Li JL, Cai YL, Guo YL, Fuh JY, Sun J, Hong GS, et al. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. J Biomed Mater Res B Appl Biomater. Oct. 24 2013.Google Scholar
  97. 97.
    Sekiya S, Shimizu T, Yamato M, Okano T. Hormone supplying renal cell sheet in vivo produced by tissue engineering technology. Biores Open Access. 2013;2(1):12–9.PubMedGoogle Scholar
  98. 98.
    Chung S, King MW. Design concepts and strategies for tissue engineering scaffolds. Biotechnol Appl Biochem. 2011;58(6):423–38.PubMedGoogle Scholar
  99. 99.
    Fotino C, Molano RD, Ricordi C, Pileggi A. Transdisciplinary approach to restore pancreatic islet function. Immunol Res. 2013;57:210–21.PubMedGoogle Scholar
  100. 100.
    Ellis CE, Suuronen E, Yeung T, Seeberger K, Korbutt GS. Bioengineering a highly vascularized matrix for the ectopic transplantation of islets. Islets. 2013;5(5):216–225.Google Scholar
  101. 101.
    Michels AW, Eisenbarth GS. Immune intervention in type 1 diabetes. Semin Immunol. 2011;23(3):214–9.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Diabetes overview. NIH Publication No. 09–3873. November 2008. http://www.diabetes.niddk.nih.gov
  103. 103.
    Stuckey MI, Shapiro S, Gill DP, Petrella RJ. A lifestyle intervention supported by mobile health technologies to improve the cardiometabolic risk profile of individuals at risk for cardiovascular disease and type 2 diabetes: study rationale and protocol. BMC Public Health. 2013;13(1):1051.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Sagarra R, Costa B, Cabre JJ, Sola-Morales O, Barrio F, el Grupo de Investigacion D-P-CP. Lifestyle interventions for diabetes mellitus type 2 prevention. Rev Clin Esp. 2014:214(2):59–68.Google Scholar
  105. 105.
    Penn L, White M, Lindstrom J, den Boer AT, Blaak E, Eriksson JG, et al. Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT. PLoS One. 2013;8(2):e57143.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Lakerveld J, Bot SD, Chinapaw MJ, van Tulder MW, van Oppen P, Dekker JM, et al. Primary prevention of diabetes mellitus type 2 and cardiovascular diseases using a cognitive behavior program aimed at lifestyle changes in people at risk: design of a randomized controlled trial. BMC Endocr Disord. 2008;8:6.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Tulane University Medical Center, Nephrology SectionNew OrleansUSA

Personalised recommendations