Bionic Eyes: Vision Restoration Through Electronic or Photovoltaic Stimulation

  • Lauren N. Ayton
  • Robyn H. Guymer
  • Penelope J. Allen
  • Chi D. Luu
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Recent advances in the fields of medical bionics and micro-technology have enabled rapid progress in the field of visual prostheses. Once believed to be the realm of science fiction, these photovoltaic and electronic devices are showing efficacy in restoring rudimentary vision to people who are profoundly vision impaired.

Visual prostheses offer hope to many people who have severe vision loss or blindness, but the technology still is in its infancy. This chapter will outline the history, current progress and future potentials for visual prostheses.

Keywords

Platinum Selenium Retina Coherence Assure 

Abbreviations

ADLs

Activities of daily living

AMD

Age-related macular degeneration

ASR

Artificial silicon retina

BaLM

Basic assessment of light and motion

BDNF

Brain-derived neurotrophic factors

BVA

Bionic vision Australia

LGN

Lateral geniculate nucleus

QoL

Quality of life

RCS

Royal College Surgeon

RP

Retinitis pigmentosa

References

  1. 1.
    Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332PubMedGoogle Scholar
  2. 2.
    Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97(3):357–365PubMedGoogle Scholar
  3. 3.
    Taylor HR et al (2005) Vision loss in Australia. Med J Aust 182(11):565–568PubMedGoogle Scholar
  4. 4.
    Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102(10):1450–1460PubMedGoogle Scholar
  5. 5.
    Hossain P, Seetho IW, Browning AC, Amoaku WM (2005) Artificial means for restoring vision. BMJ 330(7481):30–33PubMedCentralPubMedGoogle Scholar
  6. 6.
    Foerster O (1929) Beitraege zur Pathophysiologie der Sehbahn und der Sehsphaere. J Psychol Neurol 39:435–463Google Scholar
  7. 7.
    Krause F, Schum H (1931) Neue deutsche Chirurgie. Enke, StuttgartGoogle Scholar
  8. 8.
    Margalit E et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356PubMedGoogle Scholar
  9. 9.
    Tassicker GE (1956) Preliminary report on a retinal stimulator. Br J Physiol Opt 13(2):102–105PubMedGoogle Scholar
  10. 10.
    Brindley GS (1965) The number of information channels needed for efficient reading. J Physiol 177:44Google Scholar
  11. 11.
    Sterling TD, Vaughn HGJ (1971) Feasability of electrocortical prosthesis. In: Sterlin TD, Bering EA, Pollack SV, Vaughn HG (eds) Visual prosthesis: the interdisciplinary dialogue. Academic, New York, pp 1–17Google Scholar
  12. 12.
    Brindley GS (1972) The variability of the human striate cortex. J Physiol 225(2):1P–3PPubMedGoogle Scholar
  13. 13.
    Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196(2):479–493PubMedCentralPubMedGoogle Scholar
  14. 14.
    Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243(2):553–576PubMedCentralPubMedGoogle Scholar
  15. 15.
    Uematsu S, Chapanis N, Gucer G, Konigsmark B, Walker AE (1974) Electrical stimulation of the cerebral visual system in man. Confin Neurol 36(2):113–124PubMedGoogle Scholar
  16. 16.
    Bradley DC et al (2005) Visuotopic mapping through a multichannel stimulating implant in primate V1. J Neurophysiol 93(3):1659–1670PubMedGoogle Scholar
  17. 17.
    Lane FJ, Huyck MH, Troyk P (2011) Looking ahead: planning for the first human intracortical visual prosthesis by using pilot data from focus groups of potential users. Disabil Rehabil Assist Technol 6(2):139–147PubMedGoogle Scholar
  18. 18.
    Srivastava NR, Troyk PR (2006) Some solutions to technical hurdles for developing a practical intracortical visual prosthesis device. Conf Proc IEEE Eng Med Biol Soc 1:2936–2939PubMedGoogle Scholar
  19. 19.
    Troyk P et al (2003) A model for intracortical visual prosthesis research. Artif Organs 27(11):1005–1015PubMedGoogle Scholar
  20. 20.
    Troyk PR, Rush AD (2009) Inductive link design for miniature implants. Conf Proc IEEE Eng Med Biol Soc 2009:204–209PubMedGoogle Scholar
  21. 21.
    Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39(15):2577–2587PubMedGoogle Scholar
  22. 22.
    Machemer R, Buettner H, Norton EW, Parel JM (1971) Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 75(4):813–820PubMedGoogle Scholar
  23. 23.
    Machemer R, Buettner H, Parel JM (1972) Vitrectomy, a pars plana approach. Instrumentation. Mod Probl Ophthalmol 10:172–177PubMedGoogle Scholar
  24. 24.
    Machemer R, Norton EW (1972) Vitrectomy, a pars plana approach. II. Clinical experience. Mod Probl Ophthalmol 10:178–185PubMedGoogle Scholar
  25. 25.
    Machemer R, Parel JM, Norton EW (1972) Vitrectomy: a pars plana approach. Technical improvements and further results. Trans Am Acad Ophthalmol Otolaryngol 76(2):462–466PubMedGoogle Scholar
  26. 26.
    Zrenner E et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278(1711):1489–1497PubMedCentralPubMedGoogle Scholar
  27. 27.
    Ahuja AK et al (2010) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95(4):539–543PubMedCentralPubMedGoogle Scholar
  28. 28.
    Dagnelie G (2008) Psychophysical evaluation for visual prosthesis. Annu Rev Biomed Eng 10:339–368PubMedGoogle Scholar
  29. 29.
    Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng 20(4):439–449PubMedGoogle Scholar
  30. 30.
    Cha K, Horch KW, Normann RA (1992) Mobility performance with a pixelized vision system. Vision Res 32(7):1367–1372PubMedGoogle Scholar
  31. 31.
    Cha K, Horch KW, Normann RA, Boman DK (1992) Reading speed with a pixelized vision system. J Opt Soc Am A 9(5):673–677PubMedGoogle Scholar
  32. 32.
    Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22(5):607–655PubMedGoogle Scholar
  33. 33.
    Jones BW, Marc RE (2005) Retinal remodeling during retinal degeneration. Exp Eye Res 81(2):123–137PubMedGoogle Scholar
  34. 34.
    Ayton LN, Guymer RH, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Experiment Ophthalmol 41(4):396–403PubMedGoogle Scholar
  35. 35.
    Hood DC et al (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(5):2328–2336PubMedCentralPubMedGoogle Scholar
  36. 36.
    Santos A et al (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515PubMedGoogle Scholar
  37. 37.
    Stone JL, Barlow WE, Humayun MS, de Juan E Jr, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110(11):1634–1639PubMedGoogle Scholar
  38. 38.
    Humayun MS et al (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40(1):143–148PubMedGoogle Scholar
  39. 39.
    Kim SY et al (2002) Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration. Retina 22(4):464–470PubMedGoogle Scholar
  40. 40.
    Kim SY et al (2002) Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina 22(4):471–477PubMedGoogle Scholar
  41. 41.
    Lakhanpal RR et al (2003) Advances in the development of visual prostheses. Curr Opin Ophthalmol 14(3):122–127PubMedGoogle Scholar
  42. 42.
    Humayun MS et al (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43(24):2573–2581PubMedGoogle Scholar
  43. 43.
    Humayun MS et al (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114(1):40–46PubMedGoogle Scholar
  44. 44.
    Chow AY et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122(4):460–469PubMedGoogle Scholar
  45. 45.
    Guven D et al (2005) Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng 2(1):S65–73PubMedGoogle Scholar
  46. 46.
    da Cruz L et al (2013) The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 5:632–636Google Scholar
  47. 47.
    Humayun MS et al (2012) Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119(4):779–788PubMedCentralPubMedGoogle Scholar
  48. 48.
    Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401PubMedGoogle Scholar
  49. 49.
    Ong JM, Da Cruz L (2012) The bionic eye: a review. Clin Experiment Ophthalmol 40(1):6–17PubMedGoogle Scholar
  50. 50.
    Humayun MS et al (2009) Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc 2009:4566–4568PubMedCentralPubMedGoogle Scholar
  51. 51.
    Weiland JD et al (2004) Visual task performance in blind humans with retinal prosthetic implants. Conf Proc IEEE Eng Med Biol Soc 6:4172–4173PubMedGoogle Scholar
  52. 52.
    Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29(5):281–289PubMedGoogle Scholar
  53. 53.
    Hornig R et al (2007) The IMI retinal implant system. In: Humayun MS, Chader GJ, Weiland JD (eds) Artifical sight: basic research, biomedical engineering and clinical advances. Springer, New York, pp 111–128Google Scholar
  54. 54.
    Roessler G et al (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50(6):3003–3008PubMedGoogle Scholar
  55. 55.
    Chowdhury V, Morley JW, Coroneo MT (2005) Feasibility of extraocular stimulation for a retinal prosthesis. Can J Ophthalmol 40(5):563–572PubMedGoogle Scholar
  56. 56.
    Chowdhury V, Morley JW, Coroneo MT (2005) Stimulation of the retina with a multielectrode extraocular visual prosthesis. ANZ J Surg 75(8):697–704PubMedGoogle Scholar
  57. 57.
    Lee SW et al (2009) Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci 50(12):5859–5866PubMedGoogle Scholar
  58. 58.
    Zauberman H, Berman ER (1969) Measurement of adhesive forces between the sensory retina and the pigment epithelium. Exp Eye Res 8(3):276–283PubMedGoogle Scholar
  59. 59.
    Chow AY et al (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9(1):86–95PubMedGoogle Scholar
  60. 60.
    Chow AY et al (2002) Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. J Rehabil Res Dev 39(3):313–321PubMedGoogle Scholar
  61. 61.
    Pardue MT et al (2001) Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. Exp Eye Res 73(3):333–343PubMedGoogle Scholar
  62. 62.
    Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025PubMedGoogle Scholar
  63. 63.
    Pardue MT et al (2006) Neuroprotection of photoreceptors in the RCS rat after implantation of a subretinal implant in the superior or inferior retina. Adv Exp Med Biol 572:321–326PubMedGoogle Scholar
  64. 64.
    Pardue MT et al (2005) Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2(1):S39–47PubMedGoogle Scholar
  65. 65.
    Sachs HG, Bartz-Schmidt KU, Gekeler F (2010) Subretinal visual prosthetic devices in blind patients. Modifications in transchoroidal surgery and long term follow up in the first 12 patients. Annual meeting of the Association for Research in Vision and OphthalmologyGoogle Scholar
  66. 66.
    Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44(12):5362–5369PubMedGoogle Scholar
  67. 67.
    Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44(12):5355–5361PubMedGoogle Scholar
  68. 68.
    Javaheri M, Hahn DS, Lakhanpal RR, Weiland JD, Humayun MS (2006) Retinal prostheses for the blind. Ann Acad Med Singapore 35(3):137–144PubMedGoogle Scholar
  69. 69.
    Kelly SK et al (2009) Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind. Conf Proc IEEE Eng Med Biol Soc 2009:200–203PubMedGoogle Scholar
  70. 70.
    Shire DB et al (2009) Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 56(10):2502–2511PubMedGoogle Scholar
  71. 71.
    Mandel Y et al (2013) Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat Commun 4:1980PubMedGoogle Scholar
  72. 72.
    Mathieson K et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photon 6(6):391–397Google Scholar
  73. 73.
    Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39(4):424–426PubMedGoogle Scholar
  74. 74.
    Fujikado T et al (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245(10):1411–1419PubMedGoogle Scholar
  75. 75.
    Cicione R et al (2012) Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng 9(3):036009PubMedGoogle Scholar
  76. 76.
    Shivdasani MN et al (2012) Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses. Invest Ophthalmol Vis Sci 53(10):6291–6300PubMedGoogle Scholar
  77. 77.
    Shivdasani MN et al (2010) Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng 7(3):036008PubMedGoogle Scholar
  78. 78.
    Villalobos J et al (2013) A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Invest Ophthalmol Vis Sci 54(5):3751–3762PubMedGoogle Scholar
  79. 79.
    Allen PJ et al (2013) Implantation of a suprachoroidal retinal prosthesis results in number and letter recognition. Association for Research in Vision and OphthalmologyGoogle Scholar
  80. 80.
    Ayton LN et al (2013) Decrease in electrode-retina distance over time and its effect on electrical impedances in a suprachoroidal retinal prosthesis. Association for Research in Vision and Ophthalmology (ARVO).Google Scholar
  81. 81.
    Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 43(9):1091–1102PubMedGoogle Scholar
  82. 82.
    Veraart C et al (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186PubMedGoogle Scholar
  83. 83.
    Brelen ME, Vince V, Gerard B, Veraart C, Delbeke J (2010) Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest Ophthalmol Vis Sci 51(10):5351–5355PubMedGoogle Scholar
  84. 84.
    Sakaguchi H et al (2009) Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. J Artif Organs 12(3):206–209PubMedGoogle Scholar
  85. 85.
    Cai C et al (2009) Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits. Doc Ophthalmol 118(3):191–204PubMedGoogle Scholar
  86. 86.
    Sun J et al (2011) Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest Ophthalmol Vis Sci 52(1):146–154PubMedGoogle Scholar
  87. 87.
    Li L et al (2009) Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Graefes Arch Clin Exp Ophthalmol 247(3):349–361PubMedGoogle Scholar
  88. 88.
    Fang X et al (2005) Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243(1):49–56PubMedGoogle Scholar
  89. 89.
    Brelen ME, Duret F, Gerard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2(1):S22–28PubMedGoogle Scholar
  90. 90.
    Duret F et al (2006) Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor Neurol Neurosci 24(1):31–40PubMedGoogle Scholar
  91. 91.
    Veraart C, Duret F, Brelen M, Delbeke J (2004) Vision rehabilitation with the optic nerve visual prosthesis. Conf Proc IEEE Eng Med Biol Soc 6:4163–4164PubMedGoogle Scholar
  92. 92.
    Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27(11):996–1004PubMedGoogle Scholar
  93. 93.
    Pezaris JS, Eskandar EN (2009) Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus 27(1):E6PubMedCentralPubMedGoogle Scholar
  94. 94.
    Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci U S A 104(18):7670–7675PubMedCentralPubMedGoogle Scholar
  95. 95.
    Pezaris JS, Reid RC (2009) Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans Biomed Eng 56(1):172–178PubMedGoogle Scholar
  96. 96.
    Schmidt EM et al (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2):507–522PubMedGoogle Scholar
  97. 97.
    Normann RA et al (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6(3):035001PubMedCentralPubMedGoogle Scholar
  98. 98.
    Troyk PR et al (2005) Intracortical visual prosthesis research—approach and progress. Conf Proc IEEE Eng Med Biol Soc 7:7376–7379PubMedGoogle Scholar
  99. 99.
    Yu HH, Rosa MG (2010) A simple method for creating wide-field visual stimulus for electrophysiology: mapping and analyzing receptive fields using a hemispheric display. J Vis 10(14):15PubMedGoogle Scholar
  100. 100.
    Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J (1998) Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev 35(4):427–430PubMedGoogle Scholar
  101. 101.
    Ptito M, Moesgaard S, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128:606–614PubMedGoogle Scholar
  102. 102.
    Nau A (2011) BrainPort vision device. In: NEI/FDA use of functional endpoints in visual prostheses product development. National Institutes of Health, Bethesda, MDGoogle Scholar
  103. 103.
    Ayton LN & Rizzo JF (2013) Psychophysical testing of visual prosthetic devices: A call to establish a multi-national joint task force. J Neural Eng In press.Google Scholar
  104. 104.
    Chen SC, Suaning GJ, Morley JW, Lovell NH (2009) Simulating prosthetic vision: II. Measuring functional capacity. Vision Res 49(19):2329–2343PubMedGoogle Scholar
  105. 105.
    Chen SC, Suaning GJ, Morley JW, Lovell NH (2009) Simulating prosthetic vision: I. Visual models of phosphenes. Vision Res 49(12):1493–1506PubMedGoogle Scholar
  106. 106.
    Chen SC, Lovell NH, Suaning GJ (2004) Effect on prosthetic vision visual acuity by filtering schemes, filter cut-off frequency and phosphene matrix: a virtual reality simulation. Conf Proc IEEE Eng Med Biol Soc 6:4201–4204PubMedGoogle Scholar
  107. 107.
    Chen SC, Hallum LE, Lovell NH, Suaning GJ (2005) Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. J Neural Eng 2(1):S135–145PubMedGoogle Scholar
  108. 108.
    Chen SC, Suaning GJ, Morley JW, Lovell NH (2009) Rehabilitation regimes based upon psychophysical studies of prosthetic vision. J Neural Eng 6(3):035009PubMedGoogle Scholar
  109. 109.
    Bach M, Wilke M, Wilhelm B, Zrenner E, Wilke R (2010) Basic quantitative assessment of visual performance in patients with very low vision. Invest Ophthalmol Vis Sci 51(2):1255–1260PubMedGoogle Scholar
  110. 110.
    Wilke R et al (2007) Testing visual functions in patients with visual prostheses. In: Humayun M, Weiland J, Chader GJ, Greenbaum E (eds) Artificial sight: basic research, biomedical engineering, and clinical advances. Springer, Oak Ridge, TN, pp 91–110Google Scholar
  111. 111.
    Bailey IL, Jackson AJ, Minto H, Greer RB, Chu MA (2012) The Berkeley Rudimentary Vision Test. Optom Vis Sci 89(9):1257–1264PubMedGoogle Scholar
  112. 112.
    Yanai D et al (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol 143(5):820–827PubMedGoogle Scholar
  113. 113.
    Caspi A et al (2009) Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch Ophthalmol 127(4):398–401PubMedGoogle Scholar
  114. 114.
    Keeffe JE, Francis KL, Luu CD, Barnes N, & Guymer RH (2011) Patients’ perspectives and expectations on visual prostheses. Unpublished data.Google Scholar
  115. 115.
    Barnes N et al (2011) Mobility experiments with simulated vision and sensory substitution of depth in association for research in vision and ophthalmology, Fort Lauderdale, FLGoogle Scholar
  116. 116.
    Gillespie LN, Shepherd RK (2005) Clinical application of neurotrophic factors: the potential for primary auditory neuron protection. Eur J Neurosci 22(9):2123–2133PubMedCentralPubMedGoogle Scholar
  117. 117.
    Pettingill LN, Richardson RT, Wise AK, O’Leary SJ, Shepherd RK (2007) Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans Biomed Eng 54(6 Pt 1):1138–1148PubMedCentralPubMedGoogle Scholar
  118. 118.
    Pettingill LN, Wise AK, Geaney MS, Shepherd RK (2011) Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One 6(4):e18733PubMedCentralPubMedGoogle Scholar
  119. 119.
    Morimoto T et al (2012) Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. Invest Ophthalmol Vis Sci 53(7):4254–4261PubMedGoogle Scholar
  120. 120.
    Morimoto T et al (2007) Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest Ophthalmol Vis Sci 48(10):4725–4732PubMedGoogle Scholar
  121. 121.
    Pardue MT et al (2005) Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 46(2):674–682PubMedGoogle Scholar
  122. 122.
    Ni YQ, Gan DK, Xu HD, Xu GZ, Da CD (2009) Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 219(2):439–452PubMedGoogle Scholar
  123. 123.
    Paskowitz DM et al (2007) Neurotrophic factors minimize the retinal toxicity of verteporfin photodynamic therapy. Invest Ophthalmol Vis Sci 48(1):430–437PubMedGoogle Scholar
  124. 124.
    Sato T, Fujikado T, Lee TS, Tano Y (2008) Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Muller cells. Invest Ophthalmol Vis Sci 49(10):4641–4646PubMedGoogle Scholar
  125. 125.
    Kurimoto T et al (2010) Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clin Ophthalmol 4:1441–1446PubMedCentralPubMedGoogle Scholar
  126. 126.
    Inomata K et al (2007) Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 245(12):1773–1780PubMedGoogle Scholar
  127. 127.
    Oono S et al (2011) Transcorneal electrical stimulation improves visual function in eyes with branch retinal artery occlusion. Clin Ophthalmol 5:397–402PubMedCentralPubMedGoogle Scholar
  128. 128.
    Schatz A et al (2011) Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Invest Ophthalmol Vis Sci 52(7):4485–4496PubMedGoogle Scholar
  129. 129.
    Apkarian PA (1983) Visual training after long term deprivation: a case report. Int J Neurosci 19(1–4):65–83PubMedGoogle Scholar
  130. 130.
    Romano PE, Romano JA, Puklin JE (1975) Stereoacuity development in children with normal binocular single vision. Am J Ophthalmol 79(6):966–971PubMedGoogle Scholar
  131. 131.
    Veraart C et al (1990) Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res 510(1):115–121PubMedGoogle Scholar
  132. 132.
    Barnes N et al (2012) The role of vision processing in prosthetic vision. Conf Proc IEEE Eng Med Biol Soc 2012:308–311PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lauren N. Ayton
    • 1
  • Robyn H. Guymer
    • 1
  • Penelope J. Allen
    • 1
  • Chi D. Luu
    • 1
  1. 1.Centre for Eye Research AustraliaThe University of Melbourne, Royal Victorian Eye and Ear HospitalEast MelbourneAustralia

Personalised recommendations