Abstract

Although there are certainly some good historical treatments of acoustics in the literature, it still seems appropriate to begin a handbook of acoustics with a brief history of the subject. We begin by mentioning some important experiments that took place before the 19th century. Acoustics in the 19th century is characterized by describing the work of seven outstanding acousticians: Tyndall, von Helmholtz, Rayleigh, Stokes, Bell, Edison, and Koenig. Of course this sampling omits the mention of many other outstanding investigators.

To represent acoustics during the 20th century, we have selected eight areas of acoustics, again not trying to be all-inclusive. We select the eight areas represented by the first eight technical areas in the Acoustical Society of America. These are architectural acoustics, physical acoustics, engineering acoustics, structural acoustics, underwater acoustics, physiological and psychological acoustics, speech, and musical acoustics. We apologize to readers whose main interest is in another area of acoustics. It is, after all, a broad interdisciplinary field.

Keywords

Entropy Torque Helium Titanate Rubber 

Abbreviations

AC

alternating current

ADP

ammonium dihydrogen phosphate

ASA

Acoustical Society of America

BBN

Bolt, Beranek, and Newman

CAATI

computed angle-of-arrival transient imaging

FFT

fast Fourier transform

KDP

potassium dihydrogen phosphate

LP

long-play vinyl record

MUSIC

multiple signal classification

NDRC

National Defense Research Council

PLZT

lead lanthanum zirconate titanate

PZT

lead zirconate titanate

RCA

Radio Corporation of America

SAW

surface acoustic wave

SEA

statistical energy analysis

References

  1. 2.1.
    R.B. Lindsay: Acoustics: Historical and Philosophical Development (Dowden, Hutchinson & Ross, Stroudsburg, PA 1973) p. 88, Translation of Sauveurʼs paperGoogle Scholar
  2. 2.2.
    F.V. Hunt: Origins in Acoustics (Acoustical Society of America, Woodbury, NY 1992)Google Scholar
  3. 2.3.
    R.B. Lindsay: The story of acoustics, J. Acoust. Soc. Am. 39, 629–644 (1966)ADSCrossRefMATHGoogle Scholar
  4. 2.4.
    E.F.F. Chladni: Entdeckungen über die Theorie des Klanges (Breitkopf und Härtel, Leipzig 1787)Google Scholar
  5. 2.5.
    Lord Rayleigh J.W. Strutt: The Theory of Sound, Vol. 1, 2nd edn. (Macmillan, London 1894), reprinted by Dover, 1945Google Scholar
  6. 2.6.
    M. Savart: Recherches sur les vibrations normales, Ann. Chim. 36, 187–208 (1827)Google Scholar
  7. 2.7.
    M. Faraday: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. 121, 299–318 (1831)CrossRefGoogle Scholar
  8. 2.8.
    M.D. Waller: Chladni Figures: A Study in Symmetry (Bell, London 1961)MATHGoogle Scholar
  9. 2.9.
    L.M.A. Lenihan: Mersenne and Gassendi. An early chapter in the history of shound, Acustica 2, 96–99 (1951)Google Scholar
  10. 2.10.
    D.C. Miller: Anecdotal History of the Science of Sound (Macmillan, New York 1935) p. 20Google Scholar
  11. 2.11.
    L.M.A. Lenihan: The velocity of sound in air, Acustica 2, 205–212 (1952)Google Scholar
  12. 2.12.
    J.-D. Colladon, J.K.F. Sturm: Mémoire sur la compression des liquides et la vitresse du son dans lʼeau, Ann. Chim. Phys. 36, 113 (1827)Google Scholar
  13. 2.13.
    J.B. Biot: Ann. Chim. Phys. 13, 5 (1808)Google Scholar
  14. 2.14.
    M. Mersenne: Harmonie Universelle (Crmoisy, Paris 1636), Translated into English by J. Hawkins, 1853Google Scholar
  15. 2.15.
    R.T. Beyer: Sounds of Our Times (Springer, New York 1999)CrossRefGoogle Scholar
  16. 2.16.
    H. von Helmholtz: On sensations of tone, Ann. Phys. Chem 99, 497–540 (1856)ADSCrossRefGoogle Scholar
  17. 2.17.
    T.B. Greenslade Jr.: The Acoustical Apparatus of Rudolph Koenig, The Phys. Teacher 30, 518–524 (1992)ADSCrossRefGoogle Scholar
  18. 2.18.
    R.T. Beyer: Rudolph Koenig, 1832 – 1902, ECHOES 9(1), 6 (1999)MathSciNetGoogle Scholar
  19. 2.19.
    H.E. Bass, W.J. Cavanaugh (Eds.): ASA at 75 (Acoustical Society of America, Melville 2004)Google Scholar
  20. 2.20.
    W.C. Sabine: Reverberation (The American Architect, 1900), Reprinted in Collected Papers on Acoustics by Wallace Clement Sabine, Dover, New York, 1964Google Scholar
  21. 2.21.
    V.O. Knudsen: Architectural Acoustics (Wiley, New York 1932)MATHGoogle Scholar
  22. 2.22.
    V.O. Knudsen, C. Harris: Acoustical Designing in Architecture (Wiley, New York 1950), Revised edition published in 1978 by the Acoustical Society of AmericaGoogle Scholar
  23. 2.23.
    L. Beranek: Concert and Opera Halls, How They Sound (Acoustical Society of America, Woodbury 1996)Google Scholar
  24. 2.24.
    C.M. McKinney: The early history of high frequency, short range, high resolution, active sonar, ECHOES 12(2), 4–7 (2002)Google Scholar
  25. 2.25.
    D.O. ReVelle: Gobal infrasonic monitoring of large meteoroids, ECHOES 11(1), 5 (2001)Google Scholar
  26. 2.26.
    J. Lighthill: Waves in Fluids (Cambridge Univ. Press, Cambridge 1978)MATHGoogle Scholar
  27. 2.27.
    R. Beyer: Nonlinear Acoustics (US Dept. of the Navy, Providence 1974), Revised and reissued by ASA, NY 1997Google Scholar
  28. 2.28.
    M.F. Hamilton, D.T. Blackstock (Eds.): Nonlinear Acoustics (Academic, San Diego 1998)Google Scholar
  29. 2.29.
    D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy: Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble, J. Acoust. Soc. Am. 91, 3166–3183 (1992)ADSCrossRefGoogle Scholar
  30. 2.30.
    N. Rott: Thermoacoustics, Adv. Appl. Mech. 20, 135–175 (1980)ADSCrossRefMATHGoogle Scholar
  31. 2.31.
    T. Hofler, J.C. Wheatley, G.W. Swift, A. Migliori: Acoustic cooling engine, Patent 4722201 (1988)Google Scholar
  32. 2.32.
    G.L. Augspurger: Theory, ingenuity, and wishful wizardry in loudspeaker design – A half-century of progress?, J. Acoust. Soc. Am. 77, 1303–1308 (1985)ADSCrossRefGoogle Scholar
  33. 2.33.
    A.N. Thiele: Loudspeakers in vented boxes, Proc. IRE Aust. 22, 487–505 (1961), Reprinted in J. Aud. Eng. Soc. 19, 352-392, 471-483 (1971)Google Scholar
  34. 2.34.
    L. Cremer, M. Heckl, E.E. Ungar: Structure Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 2nd edn. (Springer, New York 1990)Google Scholar
  35. 2.35.
    M.C. Junger, D. Feit: Sound, Structures, and Their Interaction, 2nd edn. (MIT Press, 1986)Google Scholar
  36. 2.36.
    A.W. Leissa: Vibrations of Plates (Acoustical Society of America, Melville, NY 1993)Google Scholar
  37. 2.37.
    A.W. Leissa: Vibrations of Shells (Acoustical Society of America, Melville, NY 1993)Google Scholar
  38. 2.38.
    E. Skudrzyk: Simple and Complex Vibratory Systems (Univ. Pennsylvania Press, Philadelphia 1968)MATHGoogle Scholar
  39. 2.39.
    R.H. Lyon: Statistical Energy Analysis of Dynamical System, Theory and Applicationss (MIT Press, Cambridge 1975)Google Scholar
  40. 2.40.
    E.G. Williams: Fourier Acoustics: Sound Radiation and Nearfield Acoustic Holography (Academic, San Diego 1999)Google Scholar
  41. 2.41.
    R.R. Goodman: A brief history of underwater acoustics. In: ASA at 75, ed. by H.E. Bass, W.J. Cavanaugh (Acoustical Society of America, Melville 2004)Google Scholar
  42. 2.42.
    N.H. Heck, J.H. Service: Velocity of Sound in Seawater (SUSC&GS Special Publication 108, 1924)Google Scholar
  43. 2.43.
    O.B. Wilson, R.W. Leonard: Measurements of sound absorption in aqueous salt solutions by a resonator method, J. Acoust. Soc. Am. 26, 223 (1954)ADSCrossRefGoogle Scholar
  44. 2.44.
    H. von Helmholtz: Die Lehre von den Tonempfindungen (Longmans, New York 1862), Translated by Alexander Ellis as On the Sensations of Tone and reprinted by Dover, 1954Google Scholar
  45. 2.45.
    M.B. Sachs: The History of Physiological Acoustics. In: ASA at 75, ed. by H.E. Bass, W.J. Cavanaugh (Acoustical Society of America, Melville 2004)Google Scholar
  46. 2.46.
    J.C.R. Licklider: Basic correlates of the auditory stimulus. In: Handbook of Experimental Psychology, ed. by S.S. Stevens (J. Wiley, New York 1951)Google Scholar
  47. 2.47.
    R.L. Wegel, C.E. Lane: The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear, Phys. Rev. 23, 266–285 (1924)ADSCrossRefGoogle Scholar
  48. 2.48.
    B.C.J. Moore: Frequency analysis and pitch perception. In: Human Psychophysics, ed. by W.A. Yost, A.N. Popper, R.R. Fay (Springer, New York 1993)Google Scholar
  49. 2.49.
    G. Fant: Acoustical Thoery of Speech Production (Mouton, The Hague 1960)Google Scholar
  50. 2.50.
    P. Ladefoged: The study of speech communication in the Acoustical Society of America. In: ASA at 75, ed. by H.E. Bass, W.J. Cavanaugh (Acoustical Society of America, Melville 2004)Google Scholar
  51. 2.51.
    D.B. Fry, P. Denes: Mechanical speech recognition. In: Communication Theory, ed. by W. Jackson (Butterworth, London 1953)Google Scholar
  52. 2.52.
    H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano, Parts I, II, and III, J. Acoust. Soc. Am. 99, 3286–3296 (1996), 100, 695-708 (1996), and 100, 1286-1298 (1996)ADSCrossRefGoogle Scholar
  53. 2.53.
    T.D. Rossing: The Science of Percussion Instruments (World Scientific, Singapore 2000)CrossRefGoogle Scholar
  54. 2.54.
    T.D. Rossing, F.R. Moore, P.A. Wheeler: Science of Sound, 3rd edn. (Addison-Wesley, San Francisco 2002)Google Scholar

Copyright information

© Springer-Verlag 2014

Authors and Affiliations

  1. 1.Center for Computer Research in Music and Acoustics (CCRMA) Department of MusicStanford UniversityStanfordUSA

Personalised recommendations