Skip to main content

Concert Hall Acoustics Based on Subjective Preference Theory

  • Chapter
Springer Handbook of Acoustics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described [10.1]. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents relativity, relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δt 1, and the reverberation time, T sub) associated with the left cerebral hemisphere, and two are spatial factors (the binaural listening level (LL) and the magnitude of the IACF, the IACC) associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR:

auditory brainstem responses

ACF:

autocorrelation function

ASW:

apparent source width

DP:

data processing

EDT:

early decay time

EEG:

electroencephalography

GA:

genetic algorithm

IACC:

interaural cross-correlation coefficient

IACF:

interaural cross-correlation function

LL:

listening level

MEG:

magnetoencephalography

SPL:

sound pressure level

SVR:

slow vertex response

TS:

target strength

References

  1. Y. Ando: Architectural Acoustics, Blending Sound Sources, Sound Fields, and Listeners (AIP/Springer, New York 1998)

    Google Scholar 

  2. W.C. Sabine: Reverberation (The American Architect and the Engineering Record, 1900), Prefaced by L.L. Beranek: Collected papers on acoustics (Peninsula, Los Altos 1992)

    Google Scholar 

  3. H. Haas: Über den Einfluss eines Einfachechos auf die Hörsamkeit von Sprache, Acustica 1, 49–58 (1951)

    Google Scholar 

  4. L.L. Beranek: Music, Acoustics and Architecture (Wiley, New York 1962)

    Google Scholar 

  5. P. Damaske: Subjektive Untersuchungen von Schallfeldern, Acustica 19, 199–213 (1967/68)

    Google Scholar 

  6. M.V. Keet: The influence of early lateral reflections on the spatial impression, Proc. 6th Int. Congress of Acoustics (Tokyo 1968), Tech. Dig., paper E-2-4

    Google Scholar 

  7. A.H. Marshall: Acoustical determinants for the architectural design of concert halls, Architect. Sci. Rev. (Australia) 11, 81–87 (1968)

    Article  Google Scholar 

  8. M. Barron: The subjective effects of first reflections in concert halls – The need for lateral reflections, J. Sound Vibr. 15, 475–494 (1971)

    Article  ADS  Google Scholar 

  9. P. Damaske, Y. Ando: Interaural crosscorrelation for multichannel loudspeaker reproduction, Acustica 27, 232–238 (1972)

    Google Scholar 

  10. M.R. Schroeder, D. Gottlob, K.F. Siebrasse: Comparative study of European concert halls: Correlation of subjective preference with geometric and acoustic parameters, J. Acoust. Soc. Am. 65, 958–963 (1974)

    Article  Google Scholar 

  11. Y. Ando: Subjective preference in relation to objective parameters of music sound fields with a single echo, J. Acoust. Soc. Am. 62, 1436–1441 (1977)

    Article  ADS  Google Scholar 

  12. Y. Ando: Calculation of subjective preference at each seat in a concert hall, J. Acoust. Soc. Am. 74, 873–887 (1983)

    Article  ADS  Google Scholar 

  13. Y. Ando: Concert Hall Acoustics (Springer, Berlin, Heidelberg 1985)

    Book  Google Scholar 

  14. A. Cocchi, A. Farina, L. Rocco: Reliability of scale-model research: A concert hall case, Appl. Acoust. 30, 1–13 (1990)

    Article  Google Scholar 

  15. S. Sato, Y. Mori, Y. Ando: The subjective evaluation of source locations on the stage by listeners, music and concert hall acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997) pp. 117–123, Chap. 12

    Google Scholar 

  16. T. Hotehama, S. Sato, Y. Ando: Dissimilarity judgments in relation to temporal and spatial factors for the sound fields in an existing hall, J. Sound Vibr. 258, 429–441 (2002)

    Article  ADS  Google Scholar 

  17. H. Sakai, P.K. Singh, Y. Ando: Inter-individual differences in subjective preference judgments of sound fields. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997) pp. 125–130, Chap. 13

    Google Scholar 

  18. M. Sakurai, Y. Korenaga, Y. Ando: A sound simulation system for seat selection. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997) pp. 51–59, Chap. 6

    Google Scholar 

  19. Y. Ando: Evoked potentials relating to the subjective preference of sound fields, Acustica 76, 292–296 (1992)

    Google Scholar 

  20. S. Sato, K. Nishio, Y. Ando: Propagation of alpha waves corresponding to subjective preference from the right hemisphere to the left with change in the IACC of a sound field, J. Temporal Des. Architect. Environ. 3, 60–69 (2003)

    Google Scholar 

  21. Y. Soeta, S. Nakagawa, M. Tonoike, Y. Ando: Magnetoencephalographic responses corresponding to individual subjective preference of sound fields, J. Sound Vibr. 258, 419–428 (2002)

    Article  ADS  Google Scholar 

  22. Y. Soeta, S. Nakagawa, M. Tonoike, Y. Ando: Spatial analysis of magnetoencephalographic alpha waves in relation to subjective preference of a sound field, J. Temporal Des. Architect. Environ. 3, 28–35 (2003)

    Google Scholar 

  23. L.A. Jeffress: A place theory of sound localization, J. Comp. Physiol. Psychol. 41, 35–39 (1948)

    Article  Google Scholar 

  24. J.C.R. Licklider: A duplex theory of pitch perception, Experientia 7, 128–134 (1951)

    Article  Google Scholar 

  25. Y. Ando, K. Yamamoto, H. Nagamastu, S.H. Kang: Auditory brainstem response (ABR) in relation to the horizontal angle of sound incidence, Acoust. Lett. 15, 57–64 (1991)

    Google Scholar 

  26. H.E. Secker-Walker, C.L. Searle: Time domain analysis of auditory-nerve-fiber firing rates, J. Acoust. Soc. Am. 88, 1427–1436 (1990)

    Article  ADS  Google Scholar 

  27. P.A. Cariani, B. Delgutte: Neural correlates of the pitch of complex tones. I. Pitch and pitch salience, J. Neurophysiol. 76, 1698–1716 (1996)

    Google Scholar 

  28. P.A. Cariani, B. Delgutte: Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch, J. Neurophysiol. 76, 1717–1734 (1996)

    Google Scholar 

  29. M. Inoue, Y. Ando, T. Taguti: The frequency range applicable to pitch identification based upon the auto-correlation function model, J. Sound Vibr. 241, 105–116 (2001)

    Article  ADS  Google Scholar 

  30. S. Sato, T. Kitamura, H. Sakai, Y. Ando: The loudness of ``complex noiseʼʼ in relation to the factors extracted from the autocorrelation function, J. Sound Vibr. 241, 97–103 (2001)

    Article  ADS  Google Scholar 

  31. K. Saifuddin, T. Matsushima, Y. Ando: Duration sensation when Listening to pure tone and complex tone, J. Temporal Des. Architect. Environ. 2, 42–47 (2002)

    Google Scholar 

  32. Y. Ando, H. Sakai, S. Sato: Formulae describing subjective attributes for sound fields based on a model of the auditory-brain system, J. Sound Vibr. 232, 101–127 (2000)

    Article  ADS  Google Scholar 

  33. Y. Ando: A theory of primary sensations measuring environmental noise, J. Sound Vibr. 241, 3–18 (2001)

    Article  ADS  Google Scholar 

  34. Y. Ando, Y. Kurihara: Nonlinear response in evaluating the subjective diffuseness of sound field, J. Acoust. Soc. Am. 80, 833–836 (1986)

    Article  ADS  Google Scholar 

  35. Y. Ando, S.H. Kang, H. Nagamatsu: On the auditory-evoked potentials in relation to the IACC of sound field, J. Acoust. Soc. Jpn. (E) 8, 183–190 (1987)

    Article  Google Scholar 

  36. Y. Ando, S. Sato, H. Sakai: Fundamental subjective attributes of sound fields based on the model of auditory – brain system. In: Computational Acoustics in Architecture, ed. by J.J. Sendra (WIT, Southampton 1999)

    Google Scholar 

  37. Y. Ando, R. Pompoli: Factors to be measured of environmental noise and its subjective responses based on the model of auditory-brain system, J. Temporal Des. Architect. Environ. 2, 2–12 (2002)

    Google Scholar 

  38. S. Sato, Y. Ando, V. Mellert: Cues for localization in the median plane extracted from the autocorrelation function, J. Sound Vibr. 241, 53–56 (2001)

    Article  ADS  Google Scholar 

  39. Y. Ando, T. Okano, Y. Takezoe: The running autocorrelation function of different music signals relating to preferred temporal parameters of sound fields, J. Acoust. Soc. Am. 86, 644–649 (1989)

    Article  ADS  Google Scholar 

  40. Y. Ando, K. Kageyama: Subjective preference of sound with a single early reflection, Acustica 37, 111–117 (1977)

    Google Scholar 

  41. K. Kato, Y. Ando: A study of the blending of vocal music with the sound field by different singing styles, J. Sound Vibr. 258, 463–472 (2002)

    Article  ADS  Google Scholar 

  42. K. Kato, K. Fujii, K. Kawai, Y. Ando, T. Yano: Blending vocal music with the sound field – the effective duration of autocorrelation function of Western professional singing voices with different vowels and pitches, Proc. Int. Symp. Musical Acoust. (ISMA) (Acoustical Society of Japan, Kyoto 2004) pp. 37–40

    Google Scholar 

  43. Y. Ando, M. Sakamoto: Superposition of geometries of surface for desired directional reflections in a concert hall, J. Acoust. Soc. Am. 84, 1734–1740 (1988)

    Article  ADS  Google Scholar 

  44. Y. Ando: Investigations on cerebral hemisphere activities related to subjective preference of the sound field, published for 1983 – 2003, J. Temporal Design Architect. Environ. 3, 2–27 (2003)

    Google Scholar 

  45. S. Sato, K. Nishio, Y. Ando: Propagation of alpha waves corresponding to subjective preference from the right hemisphere to the left with change in the IACC of a sound field, J. Temporal Des. Architect. Environ. 3, 60–69 (2003)

    Google Scholar 

  46. K. Mouri, K. Akiyama, Y. Ando: Preliminary study on recommended time duration of source signals to be analyzed, in relation to its effective duration of autocorrelation function, J. Sound Vibr. 241, 87–95 (2001)

    Article  ADS  Google Scholar 

  47. T. Taguti, Y. Ando: Characteristics of the short-term autocorrelation function of sound signals in piano performances. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997) pp. 233–238, Chap. 23

    Google Scholar 

  48. Y. Ando, S.H. Kang, K. Morita: On the relationship between auditory-evoked potentials and subjective preference for sound field, J. Acoust. Soc. Jpn. (E) 8, 197–204 (1987)

    Article  Google Scholar 

  49. Y. Ando, C. Chen: On the analysis of autocorrelation function of α-waves on the left and right cerebral hemispheres in relation to the delay time of single sound reflection, J. Architect. Planning Environ. Eng., Architectural Institute of Japan (AIJ) 488, 67–73 (1996), (in Japanese)

    Google Scholar 

  50. C. Chen, Y. Ando: On the relationship between the autocorrelation function of the α-waves on the left and right cerebral hemispheres and subjective preference for the reverberation time of music sound field, J. Architect. Planning Environ. Eng., Architectural Institute of Japan (AIJ) 489, 73–80 (1996), (in Japanese)

    Google Scholar 

  51. Y. Soeta, S. Nakagawa, M. Tonoike, Y. Ando: Magnetoencephalographic responses corresponding to individual subjective preference of sound fields, J. Sound Vibr. 258, 419–428 (2002)

    Article  ADS  Google Scholar 

  52. Y. Soeta, S. Nakagawa, M. Tonoike, Y. Ando: Spatial analysis of magnetoencephalographic alpha waves in relation to subjective preference of a sound field, J. Temporal Des. Architect. Environ. 3, 28–35 (2003)

    Google Scholar 

  53. D. Kimura: The asymmetry of the human brain, Sci. Am. 228, 70–78 (1973)

    Article  Google Scholar 

  54. R.W. Sperry: Lateral specialization in the surgically separated hemispheres. In: The Neurosciences: Third Study Program, ed. by F.O. Schmitt, F.C. Worden (MIT, Cambridge 1974), Chap. 1

    Google Scholar 

  55. J.H. Holland: Adaptation in Natural and Artificial Systems (Univ. Michigan Press, Ann Arbor 1975)

    Google Scholar 

  56. S. Sato, K. Otori, A. Takizawa, H. Sakai, Y. Ando, H. Kawamura: Applying genetic algorithms to the optimum design of a concert hall, J. Sound Vibr. 258, 517–526 (2002)

    Article  ADS  Google Scholar 

  57. S. Sato, T. Hayashi, A. Takizawa, A. Tani, H. Kawamura, Y. Ando: Acoustic design of theatres applying genetic algorithms, J. Temporal Des. Architect. Environ. 4, 41–51 (2004)

    Google Scholar 

  58. H. Sakai, P.K. Singh, Y. Ando: Inter-individual differences in subjective preference judgments of sound fields. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997), Chap. 13

    Google Scholar 

  59. F. Maki: Sound and figure: concert hall design. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997), Chap. 1

    Google Scholar 

  60. Y. Ikeda: Designing a contemporary classic concert hall using computer graphics. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997), Chap. 2

    Google Scholar 

  61. I. Nakayama: Preferred time delay of a single reflection for performers, Acustica 54, 217–221 (1984)

    Google Scholar 

  62. I. Nakayama, T. Uehara: Preferred direction of a single reflection for a performer, Acustica 65, 205–208 (1988)

    Google Scholar 

  63. J. Meyer: Influence of Communication on Stage on the Musical Quality, Proc. 15th Int. Congress Acoustics (Trondheim 1995) pp. 573–576

    Google Scholar 

  64. Y. Ando, B.P. Johnson, T. Bosworth: Theory of planning physical environments incorporating spatial and temporal values, Mem. Grad School Sci. Technol. 14-A, 67–92 (1996)

    Google Scholar 

  65. Y. Ando: On the temporal design of environments, J. Temporal Des. Architect. Environ. 4, 2–14 (2004)

    Google Scholar 

  66. Y. Ando, S. Sato, T. Nakajima, M. Sakurai: Acoustic design of a concert hall applying the theory of subjective preference, and the acoustic measurement after construction, Acust. Acta Acust. 83, 635–643 (1997)

    Google Scholar 

  67. T. Nakajima, Y. Ando: Calculation and measurement of acoustic factors at each seat in the Kirishima International Concert Hall. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997), Chap. 5

    Google Scholar 

  68. M.R. Schroeder: Number Theory in Science and Communication (Springer, Berlin, Heidelberg 1984)

    Book  MATH  Google Scholar 

  69. P.M. Morse: Vibration and Sound (McGraw-Hill, New York 1948)

    Google Scholar 

  70. Y. Ando, P.K. Singh: Global subjective evaluations for design of sound fields and individual subjective preference for seat selection. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997), Chap. 4

    Google Scholar 

  71. A.H. Marshall, D. Gottlob, H. Alrutz: Acoustical conditions preferred for ensemble, J. Acoust. Soc. Am. 64, 1437–1442 (1978)

    Article  ADS  Google Scholar 

  72. A.C. Gade: Investigations of musiciansʼ room acoustic conditions in concert halls. Part I: Methods and laboratory experiments, Acustica 69, 193–203 (1989)

    Google Scholar 

  73. D. Noson, S. Sato, H. Sakai, Y. Ando: Singer responses to sound fields with a simulated reflection, J. Sound Vibr. 232, 39–51 (2000)

    Article  ADS  Google Scholar 

  74. D. Noson, S. Sato, H. Sakai, Y. Ando: Melisma singing and preferred stage acoustics for singers, J. Sound Vibr. 258, 473–485 (2002)

    Article  ADS  Google Scholar 

  75. S. Sato, S. Ohta, Y. Ando: Subjective preference of cellists for the delay time of a single reflection in a performance, J. Sound Vibr. 232, 27–37 (2000)

    Article  ADS  Google Scholar 

  76. H.P. Seraphim: Über die Wahrnehmbarkeit mehrerer Rückwürfe von Sprachschall, Acustica 11, 80–91 (1961)

    Google Scholar 

  77. N. Aoshima: Computer-generated pulse signal applied for sound measurement, J. Acoust. Soc. Am. 69, 1484–1488 (1981)

    Article  ADS  Google Scholar 

  78. C. Hayashi: Multidimensional quantification I., Proc. Jpn. Acad. 30, 61–65 (1954)

    Article  MATH  Google Scholar 

  79. C. Hayashi: Multidimensional quantification II., Proc. Jpn. Acad. 30, 165–169 (1954)

    Article  Google Scholar 

  80. V.L. Jordan: Acoustical criteria for auditoriums and their relation to model techniques, J. Acoust. Soc. Am. 47, 408–412 (1969)

    Article  ADS  Google Scholar 

  81. T. Hidaka: Personal communication (1996)

    Google Scholar 

  82. Y. Kobayasi, H. Tokuhiro, M. Owaki, K. Okuno, S. Yamada, Y. Ando: Acoustical design and characteristics of the atrium for music performance in a hotel. In: Music and Concert Hall Acoustics, Conf. Proc. MCHA 1995, ed. by Y. Ando, D. Noson (Academic, London 1997), Chap. 27

    Google Scholar 

  83. L.L. Thurstone: A law of comparative judgment, Psychol. Rev 34, 273–289 (1951)

    Article  Google Scholar 

  84. F. Mosteller: Remarks on the method of paired comparison, III. Psychometrika 16, 207–218 (1951)

    Article  Google Scholar 

  85. C. Hayashi: On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view, Ann. Inst. Statist. Math., 69–98 (1952)

    Google Scholar 

  86. Y. Ando: Auditory and Visual Sensations (Springer, New York 2009)

    Google Scholar 

  87. Y. Ando: Theory of temporal and spatial environmental design. In: McGraw-Hill Yearbook of Science & Technology 2009, ed. by T. Rossing (McGraw-Hill, New York 2009) pp. 384–389

    Google Scholar 

  88. J. Temporal Des. Architect. Environ. (2001–present)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Ando, Y. (2014). Concert Hall Acoustics Based on Subjective Preference Theory. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_10

Download citation

Publish with us

Policies and ethics