Sequential Forward Solver

  • Sima Noghanian
  • Abas Sabouni
  • Travis Desell
  • Ali Ashtari


In this chapter, the theory of the inverse and direct (forward) scattering problem is explained. A method for solving the inverse problem is developed in detail, and the results of some numerical simulations are used to make an in-depth analysis of the capabilities and effectiveness of the proposed approach.


Scattered Field Incident Field Debye Model FDTD Method Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press, New York 2001)CrossRefGoogle Scholar
  2. 2.
    F. Ahmad, M. Amin, S. Kassam, Synthetic aperture beamformer for imaging through a dielectric wall. IEEE Trans. Aero. Electron. Syst. 41(1), 271–283 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Yale University Press, New Haven, 1923)MATHGoogle Scholar
  4. 4.
    M. Oristaglio, H. Blok, Wavefield Imaging and Inversion in Electromagnetics and Acoustics. Course Notes TU Delft, 1995Google Scholar
  5. 5.
    P. Mojabi, J. LoVetri, Overview and classification of some regularization techniques for the gauss-newton inversion method applied to inverse scattering problems. IEEE Trans. Antenn. Propag. 57(9), 2658–2665 (2009)CrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Chew, Y. Wang, Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method. IEEE Trans. Med. Imag. 9(2), 218–225 (1990)CrossRefGoogle Scholar
  7. 7.
    S. Caorsi, G. Gragnani, M. Pastorino, Two-dimensional microwave imaging by a numerical inverse scattering solution. IEEE Trans. Microw. Theor. Tech. 38(8), 981–990 (1990)CrossRefGoogle Scholar
  8. 8.
    R.E. Kleinman, P.M. Van den Berg, A modified gradient method for two-dimensional problems in tomography. J. Comput. Appl. Math. 42(1), 17–35 (1992)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. Franchois, C. Pichot, Microwave imaging-complex permittivity reconstruction with a levenberg-marquardt method. IEEE Trans. Antenn. Propag. 45(2), 203–215 (1997)CrossRefGoogle Scholar
  10. 10.
    P. Meaney, K. Paulsen, T. Ryan, Two-dimensional hybrid element image reconstruction for tm illumination. IEEE Trans. Antenn. Propag. 43(3), 239–247 (1995)CrossRefGoogle Scholar
  11. 11.
    I.T. Rekanos, T.D. Tsiboukis, An iterative numerical method for inverse scattering problems. Radio Sci. 34(6), 1401–1412 (1999)CrossRefGoogle Scholar
  12. 12.
    W. Chien, C.C. Chiu, Using nu-ssga to reduce the searching time in inverse problem of a buried metallic object. IEEE Trans. Antenn. Propag. 53(10), 3128–3134 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Qing, An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the real-coded genetic algorithm. Microw. Opt. Tech. Lett. 30, 315–320 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Caorsi, A. Massa, M. Pastorino, A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE Trans. Geosci. Rem. Sens. 38(4), 1697–1708 (2000)CrossRefGoogle Scholar
  15. 15.
    T. Takenaka, Z.Q. Meng, T. Tanaka, W.C. Chew, Local shape function combined with genetic algorithm applied to inverse scattering for strips. Microw. Opt. Tech. Lett. 16, 337–341 (1997)CrossRefGoogle Scholar
  16. 16.
    V. Thomas, C. Gopakumar, J. Yohannan, A. Lonappan, G. Bindu, A.V.P. Kumar, V. Hamsakutty, K.T. Mathew, A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks. J. Electromagn. Waves Appl. 19(15), 2113–2121 (2005)CrossRefGoogle Scholar
  17. 17.
    D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, New York, 1992)CrossRefMATHGoogle Scholar
  18. 18.
    I.T. Rekanos, Time-domain inverse scattering using lagrange multipliers: an iterative fdtd-based optimization technique. J. Electromagn. Waves Appl. 17(2), 271–289 (2003)CrossRefGoogle Scholar
  19. 19.
    N.W. Kang, Y.S. Chung, C. Cheon, H.K. Jung, A new 2-d image reconstruction algorithm based on fdtd and design sensitivity analysis. IEEE Trans. Microw. Theor. Tech. 50(12), 2734–2740 (2002)CrossRefGoogle Scholar
  20. 20.
    T. Takenaka, H. Jia, T. Tanaka, Microwave imaging of electrical property distributions by a forward-backward time stepping method. J. Electromagn. Waves Appl. 14, 1609–1625 (2000)CrossRefMATHGoogle Scholar
  21. 21.
    S. He, P. Fuks, G. Larson, An optimization approach to time-domain electromagnetic inverse problem for a stratified dispersive and dissipative slab. IEEE Trans. Antenn. Propag. 44(9), 1277–1282 (1996)CrossRefGoogle Scholar
  22. 22.
    W. Chew, J. Lin, A frequency-hopping approach for microwave imaging of large inhomogeneous bodies. IEEE Microw. Guided Wave Lett. 5(12), 439–441 (1995)CrossRefGoogle Scholar
  23. 23.
    I. Rekanos, T. Tsiboukis, A finite element-based technique for microwave imaging of two-dimensional objects. IEEE Trans. Instrum. Meas. 49(2), 234–239 (2000)CrossRefGoogle Scholar
  24. 24.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)Google Scholar
  25. 25.
    J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    P. Kosmas, C. Rappaport, E. Bishop, Modeling with the fdtd method for microwave breast cancer detection. IEEE Trans. Microw. Theor. Tech. 52(8), 1890–1897 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Converse, E. Bond, B. Veen, C. Hagness, A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment. IEEE Trans. Microw. Theor. Tech. 54(5), 2169–2180 (2006)CrossRefGoogle Scholar
  28. 28.
    X. Li, S. Hagness, A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw. Wireless Compon. Lett. 11(3), 130–132 (2001)CrossRefGoogle Scholar
  29. 29.
    K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966)CrossRefMATHGoogle Scholar
  30. 30.
    J. Richmond, Scattering by a dielectric cylinder of arbitrary cross section shape. IEEE Trans. Antenn. Propag. 13(3), 334–341 (1965)CrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Ouda, A. Sebak, Scattering from lossy dielectric cylinders using a multifilament current model with impedance boundary conditions. IEE Proc. Microw. Antenn. Propag. H 139(5), 429–434 (1992)CrossRefGoogle Scholar
  32. 32.
    M. Bui, S. Stuchly, G. Costache, Propagation of transients in dispersive dielectric media. IEEE Trans. Microw. Theor. Tech. 39(7), 1165–1172 (1991)CrossRefGoogle Scholar
  33. 33.
    C. Gilmore, Towards and improved microwave tomography system. Ph.D. Dissertation, Dept. Elect. Comput. Eng., Univ. of Manitoba, 2009Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sima Noghanian
    • 1
  • Abas Sabouni
    • 2
  • Travis Desell
    • 3
  • Ali Ashtari
    • 4
  1. 1.Department of Electrical EngineeringUniversity of North DakotaGrand ForksUSA
  2. 2.Department of Electrical EngineeringWilkes UniversityWilkes-BarreUSA
  3. 3.Department of Computer ScienceUniversity of North DakotaGrand ForksUSA
  4. 4.Invenia Technical ComputingWinnipegCanada

Personalised recommendations