Choice Functions on Tree Quasi-Orders

  • F. R. McMorrisEmail author
  • R. C. Powers
Part of the Springer Optimization and Its Applications book series (SOIA, volume 92)


The domain of social choice functions is extended to tree quasi-orders, and versions of the theorems of Arrow, Muller–Satterthwaite, and Gibbard–Satterthwaite are proved in this setting.


Choice function Consensus function Tree quasi-order Strategy-proof 


  1. 1.
    Aleskerov, F.: Arrovian Aggregation Models. Kluwer, Boston (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)zbMATHGoogle Scholar
  3. 3.
    Beja, A.: Arrow and Gibbard-Satterthwaite revisited. Math. Soc. Sci. 25, 281–286 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Campbell, D.E.: Equity, Efficiency, and Social Choice. Clarendon Press, Oxford (1992)Google Scholar
  5. 5.
    Day, W.H.E., McMorris, F.R.: Axiomatic Consensus Theory in Group Choice and Biomathematics. Frontiers in Applied Mathematics. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gaertner, W.: A Primer in Social Choice Theory. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  7. 7.
    Gärdenfors, P.: A concise proof of theorem on manipulation of social choice functions. Public Choice 32, 137–142 (1977)CrossRefGoogle Scholar
  8. 8.
    Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41, 587–601 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kelly, J.S.: Arrow Impossibility Theorems. Academic, New York (1978)zbMATHGoogle Scholar
  10. 10.
    Malawski, M., Zhou, L.: A note on social choice theory without the Pareto principle. Soc. Choice Welf. 11, 103–107 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    McMorris, F.R., Neumann, D.: Consensus functions defined on trees. Math. Soc. Sci. 4, 131–136 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    McMorris, F.R., Powers, R.C.: Consensus functions on tree quasi-orders that satisfy an independence condition. Math. Soc. Sci. 48, 183–192 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Mirkin, B.: Group Choice. Scripta Series in Mathematics. V.H. Winston, Washington (1979)zbMATHGoogle Scholar
  14. 14.
    Muller, E., Satterthwaite, M.A.: The equivalence of strong positive association and stratey-proofness. J. Econ. Theory 14, 412–418 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Reny, P.J.: Arrow’s theorem and the Gibbard-Satterthwaite theorem: a unified approach. Econ. Lett. 70, 99–105 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10, 198–217 (1975)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sholomov, L.A.: Explicit form of neutral social decision rules for basic rationality conditions. Math. Soc. Sci. 39, 81–107 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Wilson, R.: Social choice theory without the Pareto principle. J. Econ. Theory 5, 478–486 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsIllinois Institute of TechnologyChicgoUSA
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA

Personalised recommendations